

Institute of High Energy Physics Chinese Academy of Sciences

Higgs boson: current status from the experiment side

<u>Jin Wang¹</u>

On behalf of the ATLAS and CMS Collaboration

1. Institute of High Energy Physics, CAS

25th April 2023

CorfuFA: Workshop on Future Accelerators

ATLAS and CMS in LHC

Large Hadron Collider (LHC) : Largest accelerator and currently the only place to study the Higgs boson ATLAS and CMS: General purpose detectors in LHC with Higgs physics as one of the main goals

Higgs physics

- The discovery of Higgs boson in 2012 by ATLAS and CMS experiments in LHC
 - A great success of the Standard Model (SM)
 - Opens a new era of particle physics
 - Opportunities to better understanding of electroweak symmetry breaking and test of Standard Model precision
 - Windows for new physics searches

- Many important questions remain unanswered in SM:
 - neutrino mass, hierarchy problem, matter antimatter asymmetry, the nature of dark matter and dark energy etc.

Higgs physics could be the key to answer these questions

- LHC Run 2 provided more statistics allowing for more precise measurements of Higgs properties including
 - Higgs production cross-sections, couplings, mass, width, CP, Higgs self-coupling

Higgs production cross section and couplings

CorfuFA: Workshop on Future Accelerators

Higgs production cross section and coupling measurements

• Measurements of the Higgs production cross sections and couplings

- Excellent tests of SM
- Probe anomalies from BSM contributions
- All main production processes and decay channels established
- Now studying Higgs with more precise measurements and looking for rare corners
 - Finer phase-space regions, more differential, exploring extreme kinematics
 - Couplings to second generation fermions, rare decay channels

Simplified template cross section in Run2

- Simplified template cross section (STXS) framework further splits production mode cross-sections into various phase-space regions (bins)
 - Look into more details of the SM prediction
 - Isolate regions sensitive to Beyond Standard Model (BSM) effects
 - Increase the bin granularity with more data, defined as different stages
 - Refined STXS bins with stage 1.2 for recent Higgs measurements

$Higgs \rightarrow \gamma \gamma$ analysis

- $Higgs \rightarrow \gamma \gamma$ channel with small branching ratio (BR) but very clean signature
 - Benefit from the excellent photon resolution in ATLAS and CMS
 - Distinct narrow signal peak over continuous backgrounds
- Events selected to match STXS bins and categorized for sensitivity
 - Events classified using multi-class Booted Decision Trees (BDTs) methods or simple cuts to match STXS bins
 - Separate MVAs or categorization used to maximum signal significance in each event class
- Cross sections extracted by fitting signal and background models to mass spectrum of data arXiv:2207.00348
 Maximize CMS

$Higgs \rightarrow \gamma \gamma$ results

- Total cross sections measured are at 10% level from both ATLAS and CMS.
- Systematic uncertainties smaller or comparable to the statistical uncertainties

$Higgs \rightarrow \gamma \gamma$ results

9

- Good agreement between measured $oldsymbol{0}$ cross sections and SM predictions
- Reaching better sensitivity to more \bigcirc bins with full Run2 data
 - ttH is firstly measured in 5 p_T^H bins

25th April 2023

ATLAS

gg→H, 0-jet, p₊^H < 10

arXiv:2207.00348

 $H \rightarrow \gamma\gamma \ \ \, m_{_{\rm H}} = 125.09 \; GeV \; \; |y_{_{\rm H}}|{<}2.5$

He Obs + Tot. Unc. Syst. unc. SM + Theo. unc.

√s=13 TeV, 139 fb⁻¹

+ 0.18

0.67 0.27

p-value = 93% Tot. Stat.

Syst +0.28 (+0.25 +0.13)

- 0.10

+ 0.10

$Higgs \rightarrow ZZ \rightarrow 4l$ analysis

- Final states features with 4 leptons from ZZ decay
 - large signal-to-background ratio with low background rate
 - complete reconstruction of the final state products with good lepton resolution
- Main background from non-resonant ZZ production

CorfuFA: Workshop on Future Accelerators

$Higgs \rightarrow ZZ \rightarrow 4l$ results

Eur. Phys. J. C 80 (2020) 957

- Inclusive measurements with ~10% uncertainties
- Results agree well with SM predictions

$Higgs \rightarrow ZZ \rightarrow 4l$ results

Eur. Phys. J. C 80 (2020) 957

Eur. Phys. J. C 81 (2021) 488

- STXS results also show good compatibility with SM
 - Precision limited by statistics

$Higgs \rightarrow ZZ$ differential cross sections

13

- Measured in fiducial volume defined to match experimental selections
 - Reduce detector effects, model independent
- Measurements of XS as function of several observables
 - Looking in to details of kinematics
 - Sensitive to BSM effects

CorfuFA: Workshop on Future Accelerators

$H \rightarrow WW^*$ results

14

- $H \rightarrow WW^*$ with higher branching ratios and complex background
 - Study gluon fusion, vector boson fusion, and associate production with a W or Z boson
 - Targeting events with at least one leptonically decaying W boson
- Exploring various MVA approaches and kinematic fitting to reject backgrounds and extract signals
 - ATLAS: m_T in ggH, NN in qqH, ANN, RNN and BDT in VH
 - CMS: counting, m_{ll} , \widetilde{m}_H , BDT, DNN

CorfuFA: Workshop on Future Accelerators

$H \rightarrow WW^*$ results

CorfuFA: Workshop on Future Accelerators

$H \rightarrow WW^*$ results

16

- Differential XS measured in ggF and VBF production modes
- Extended with EFT interpretations
 - SMEFT Wilson coefficients from CP-even and CP-odd operators obtained with only one Wilson coefficient left floating at a time

arXiv:2304.03053

$H \rightarrow bb$ results

- 17
 - $H \rightarrow bb$ with largest branching ratio and suffers from large multijet-QCD background
 - ATLAS/CMS VHbb: studied both resolved and boosted topologies
 - ATLAS/CMS VBFbb: multiple event categories based on the BDT response, targeting VBF, ggH and Z(bb) + jets processes

Coupling to second generation fermions

- $H \rightarrow \mu \mu$
 - Very small branching ratio (0.02%)
 - Very good resolution
- ATLAS: <u>Phys. Lett. B 812(2021) 135980</u>
 - $\mu = 1.2 \pm 0.6$
 - 2σ significance
- CMS: <u>*IHEP 01 (2021) 148</u>*</u>
 - $\mu = 1.19 + 0.40 0.39$ (stat.) + 0.15 0.14 (syst.)
 - 3σ significance !

- $H \to cc$
 - small branching ratio (3%)
 - Large QCD backgrounds
- ATLAS: <u>Eur. Phys. J. C 82 (2022) 717</u>
 - Observed (expected) upper limit at 95% C.L
 26 (31) times the SM prediction
- CMS Resolved: <u>accepted by PRL</u>
 - Upper limits: 14 (7.6) times the SM prediction
- CMS Boosted: <u>accepted by PRL</u>
 - Upper limits: 47 (39) times the SM prediction

Combined Higgs coupling measurements

- 19
- Maximum Higgs production cross section and coupling analysis sensitivity with combination of different Higgs production and decays
- Recent results with full Run2 dataset produced by ATLAS and CMS for the 10 year anniversary of the Higgs boson discovery
 - All main Higgs production and decay channels covered with addition of rare channels

Analysis input (example from CMS)	Lumi (fb-1)	ggH	qqH	VH	ttH and tH	
<u>Η(</u> γγ)	138	Х	Х	Х	Х	
<u>H(ZZ)</u>	138	Х	Х	Х	Х	
<u>H(WW)</u>	138	Х	Х	Х	Х	
<u>H(Zɣ)</u>	138	Х	Х			
H(bb)	<u>36(ttH) 77(VH) 138(ggH)</u>	Х	Х	Х	Х	
<u>Η(ττ)</u>	138	Х	Х	Х	Х	
<u>ttH multilepton(ττ, WW, and ZZ)</u>	138				Х	
<u>Η(μμ)</u>	138	Х	Х		Х	
<u>H(invisible)</u>	138	Х	Х	Х		
CorfuFA: Workshop on Future Accelerators			25th April 2023			

Higgs production signal strength

- 20
- Signal strength: ratio of the measured cross section and the SM expectation
- Global signal strength measured for all production and decays together
 - ATLAS: μ = 1.05 ± 0.03(stat.) ± 0.03(exp.) ± 0.04(sig . th.) ± 0.02(bkg . th.)
 - CMS: $\mu = 1.002 \pm 0.029$ (stat.) ± 0.033 (exp.) ± 0.036 (theory)
- Signal strength per production mode

CorfuFA: Workshop on Future Accelerators

Higgs decay signal strength

• Signal strength per decay channel

21

• Leading 5 main decay modes observed with more than 5σ significance

Observations agree well with SM prediction

CorfuFA: Workshop on Future Accelerators

κ framework

- Kappa framework: assign coupling modifier to each Higgs interaction vertex
 - Free floating in the combination of all production and decay modes
 - Flexible with assumptions that allows for the presence of non-SM particles in the loop induced processes

Results compatible with SM

CorfuFA: Workshop on Future Accelerators

κ framework

23

• Single modifier for vector bosons k_V and single modifier for fermion coupling k_f

- Observed results compatible with SM prediction within 2 σ
- Significant improvement on sensitivity in Run2 comparing to discovery and Run 1

Coupling versus mass

24

- Higgs couplings to individual particles well align with particle masses
 - ATLAS plot with two fit scenarios
 - $k_c = k_t$ (coloured circle markers), or k_c left free-floating in the fit (grey cross markers)
 - Loop-induced processes are assumed to have the SM structure
 - Assume no non-SM Higgs decays

CorfuFA: Workshop on Future Accelerators

Higgs mass and width

CorfuFA: Workshop on Future Accelerators

Higgs mass measurements

26

- Higgs mass is the only free parameter in SM Higgs sector
 - Determines Higgs production and decay rates
 - Tells the stability of the universe and its fate
- Higgs mass measured with $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ channels in ATLAS and CMS
 - Best mass resolution and complete reconstruction of the final state

CorfuFA: Workshop on Future Accelerators

Higgs width

- Difficult for direct measurement of Higgs width due to detector resolution
 - Detector resolution (1-2GeV) >> Higgs width Γ_H (4.1MeV)
- Indirect measurement with $H \rightarrow ZZ$ channel by comparing on-shell and off-shell

CP properties of Higgs couplings

CorfuFA: Workshop on Future Accelerators

CP properties of Higgs couplings

29

- Run1 Higgs analysis by ATLAS and CMS in favor of spin 0 CP even SM Higgs
 - CP studies in Run1 mainly based on Higgs decay vertexes
- Small anomalous interactions like CP-odd Higgs couplings still possible
- New Higgs CP analyses in Run2 by ATLAS and CMS targeting

• Higgs production vertexes: *HVV*, *Htt*, *Hgg*

CP property of *Hgg* and *HVV* coupling

- 30
- Test of CP invariance in $H \rightarrow \gamma \gamma$ in ATLAS:
 - Probe the CP structure of interactions between the Higgs boson and electroweak gauge bosons with Optimal Observable method
- CP studies with $H \rightarrow ZZ$ combing with $H \rightarrow \gamma \gamma$ in CMS
 - First study of CP properties of the Htt and effective Hgg couplings with both gluon fusion and top-associated processes
 - Results also interpreted in the framework of effective field theory

CP property of *Htt* coupling

31

- Probing the CP nature of the top-Higgs Yukawa coupling in ttH and tH with $H \rightarrow bb$ decays in ATLAS
 - Mixing angle between CP-even and CP-odd couplings measured to be $\alpha = 11^{\circ} + 52^{\circ} 73^{\circ}$
- Search for CP violation in ttH and tH production in multilepton channels in CMS
 - Two-dimensional confidence regions set on CP-even and CP-odd top-Higgs Yukawa coupling modifiers k_t and \tilde{k}_t Accepted by J. High Energy Phys

CP properties of $H \rightarrow \tau \tau$ decay

32

- Study of CP properties of Higgs boson interactions with τ-leptons in ATLAS
 - CP-violating interactions described by a single mixing angle parameter $\phi\tau$
 - Mixing angle ϕT measured to be 9 ± 16°
 - Pure CP-odd hypothesis disfavoured at a level of 3.4 standard deviations
- Measurement of CP properties of $H \rightarrow \tau \tau$ decay from CMS using full Run 2 data
 - Exploits the angular correlation between the decay planes of τ leptons from Higgs decays
 Effective mixing angle between CP-even and CP-odd τ Yukawa couplings: -1 ± 19°
 - Data disfavor the pure CP-odd scenario at 3.0 standard deviations

Higgs self-coupling

CorfuFA: Workshop on Future Accelerators

Higgs self-coupling measurement

- Higgs self-coupling crucial for understanding the Higgs field potential
 - Understand the electroweak symmetry breaking mechanism
 - $V = \mu^2 H^2 + \frac{\mu^2}{\nu} H^3 + \frac{\mu^2}{4\nu^2} H^4$

34

- Higgs self-coupling with HH and H in ATLAS and CMS
 - Measure coupling modifiers k_{λ}

• $k_{\lambda} = \lambda / \lambda_{SM}$

- Direct probes from HH measurements
- Indirect constraints from H measurement

HH production modes

35

• HH production challenging to measure due to its small cross section

- $\sigma_{HH} \sim \frac{\sigma_H}{1000}$ in SM at 13TeV
- Two main production modes
 - $\sigma_{ggF} = 31.05 \, fb \, \text{SM} @ 13 \text{TeV}$
 - Dominant channel for studying self-coupling
 - Destructive interference
 - $\sigma_{VBF} = 1.73 \, fb$ SM @13TeV
 - Only channel to access quartic VVHH coupling
- k_{λ} determines HH production cross section
- Spectrum of m_{HH} depends on k_{λ}
 - Softer for large $|k_{\lambda}|$

 $\kappa_{\lambda} = \lambda / \lambda^{SM}$ also dictates signal kinematics:

Various Higgs coupling modifiers (coupling over SM prediction): k_{λ} , k_{2V} , k_t , k_V

CorfuFA: Workshop on Future Accelerators

HH combination with full Run 2 data

36

- Best HH sensitivity via combination of all available decay channels
 - Using full Run 2 data with ~140 fb^{-1}
 - Included the most sensitive channels

- HH search evolution since early Run 2 besides more data
 - Inclusion of more channels
 - Measurement of quartic couplings with VBF HH production mechanism
 - Extensive usage of machine learning, selection/tagging optimization
 - Boosted topologies, additional final states

CorfuFA: Workshop on Future Accelerators

Limits on the HH production signal strength

arXiv:2211.01216

- Expected and observed limits on the HH signal strength
 - Most stringent limits (best observed) from ATLAS: 2.4 (2.9) \times SM
 - Best sensitivity (best expected) on HH limit from CMS: 3.4 (2.5) \times SM
 - Significant improvement comparing to early Run 2 results
 - Sensitivity in HL-LHC sufficient to establish the existence of the SM HH production

Nature 607 (2022) 60-68

Constraints on Higgs self-coupling

38

- 95% CL interval for Higgs self-coupling k_{λ}
 - ATLAS observed (expected) : $-0.6 < k_{\lambda} < 6.6 (-2.1 < k_{\lambda} < 7.8)$
 - CMS observed (expected) : $-1.24 < k_{\lambda} < 6.49 \ (-2.28 < k_{\lambda} < 7.94)$

arXiv:2211.01216

Nature 607 (2022) 60-68

Limits on quartic couplings

39

- 95% CL interval for quartic VVHH coupling k_{2V}
 - ATLAS observed (expected) : $0.1 < k_{2V} < 2.0 \ (0.0 < k_{\lambda} < 2.1)$
 - CMS observed (expected) : $0.67 < k_{2V} < 1.38 (0.61 < k_{\lambda} < 1.42)$
- $\kappa_{2V} = 0$ is excluded assuming SM values for all other ks

Indirect constraints on Higgs self-coupling

• Single Higgs production cross section and decay branching ratios affected by k_{λ} with NLO electroweak corrections

Example of k_{λ} in single Higgs production

- Single Higgs combination provides complementary constraints on Higgs self-coupling
- HH+H combination for Higgs self-coupling allows a more model independent measurement

40

Higgs measurements towards HL-LHC

25th April 2023

coupling expected in HL-LHC

Summary

- A summary of recent Higgs property measurement results from ATLAS and CMS experiments using full Run 2 data
 - Higgs cross section and couplings measured with better precision and details
 - The Higgs boson mass measured with a precision of the order to 0.1%
 - The best width measurement extracted by comparing on-shell with off-shell decay
 - CP structures tested in *HVV*, *Htt*, *Hgg* and $H\tau\tau$ couplings
 - Higgs self-coupling constrained with non-resonant HH combination as well as single Higgs combination results
- Significant improvement on precisions of Higgs measurements achieved in Run 2 with respect to the Higgs discovery and early analyses
- Exciting Higgs results in Run 3 are knocking in!

42

CorfuFA: Workshop on Future Accelerators