QCD and top-quark physics Current status from the experiment

CORFU 2023 Workshop on Future Accelerators

25th April 2023

Javier Jiménez Peña

IFAE Barcelona

On behalf of ATLAS and CMS Collaborations

beatriu depinós DD

Introduction

Introduction

- ATLAS and CMS are testing EW and QCD predictions in a wide range of processes.
- Exploring process rates over 9 orders of magnitude, from Z, W and top pair to rare processes as multiboson or four tops.
- Precise experimental results allow to test higher order calculations in QCD.

Further information

- Many results by **ATLAS and CMS** in the topic to cover them all.
- What follows is a selection of recent results focused in QCD or involving top quarks.
- Apologies for not covering other LHC experiments as ALICE

For further results, visit: ATLAS Public page (Physics briefings) CMS Public page (Physics briefings)

Splash event from March 23

QCD production at the LHC

Hard and Soft QCD are the dominant production methods at the LHC. All LHC observations depend on the **modeling of the QCD**. Large momentum QCD measurements are versatile and can tackle many fundamental aspects: • Strong coupling (α_s), PDFs, test Resummation/PS, background for BSM physics However, is also fundamental to understand **soft QCD** phenomena: Diffraction, low mu events, parton scattering. Dedicated measurements with ALPHA and TOTEM.

Both ATLAS and CMS have a deep program for both hard and soft QCD

Lund jet plane density

Full Run-2 measurement of Lund jet plane density in dijet events:

- LJP = 2D representation of phase space of emission inside jets.
- Splitting angle: $\Delta R = \sqrt{(y_{\text{soft}} y_{\text{hard}})^2 + (\phi_{\text{soft}} \phi_{\text{hard}})^2}$
- Relative transverse momentum: $k_{\mathrm{T}} = p_{\mathrm{T}} \Delta R$

Measurement of jet-averaged density of emissions

$$\frac{1}{N_{\text{jets}}} \frac{\mathrm{d}^2 N_{\text{emissions}}}{\mathrm{d} \ln(k_{\text{T}}) \mathrm{d} \ln(R/\Delta R)} \approx \frac{2}{\pi} C_{\text{R}} \alpha_{\text{S}}(k_{\text{T}})$$

- Done for anti-kT jets with R = 0.4 and 0.8
- Reclustered with Cambridge/Aachen

CMS-PAS-SMP-22-007

Briefing

- Includes charged constituents with $p_{\tau} > 1 \text{ GeV}$
 - better angular and momentum resolution
 - better PU control

Inclusive dijet selection: $p_{T} > 700 \text{ GeV}$, |y| < 1.7

Kinematical edge corresponds to

Javier Jiménez Peña - CORFU 2023

Lund jet plane density

CMS-PAS-SMP-22-007 Briefing

Measurement **compared with** different **theory** predictions:

- Project Lund jet plane in **slices of \Delta R and k_{\tau}** to test:
 - Parton shower calculations
 - Jet substructure technique developments.
 - PDFs and running of strong coupling constant.

Tested various showers models in Pythia8, Sherpa, and various recoil schemes in Herwig.

In the soft and collinear limit, the running of $\alpha_s(Q^2)$ sculpts the Lund jet plane density:

Achieved precision: ~2-7% (20% at edge)

Major uncertainties:

- Modeling of parton shower, hadronization.
- Track resolution.

arXiv:2301.09351

Strong coupling estimation in multijet events

Full Run-2 estimation of the running of the strong coupling (α_s) in multijet events.

Event shape observables are used:

• Transverse Energy-Energy Correlation (TEEC):

transverse-energy-weighted azimuthal angular distribution of produced jet pairs in the final state.

$$\frac{1}{\sigma}\frac{d\Sigma}{d\cos\phi} = -\frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{Ti}^{A}E_{Tj}^{A}}{(\sum_{k}E_{Tk}^{A})^{2}}\delta(\cos\phi - \cos\phi_{ij})$$

• Associated Azimutal asymmetries (ATEEC): TEEC forward-backward asymmetry in Φ

$$\frac{1}{\sigma} \frac{d\Sigma^{asym}}{d\cos\phi} = \frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{d\Sigma^{asym}}{d\cos\phi} \bigg|_{\pi-\phi}$$

- Large sensitivity to QCD radiation and $\alpha_s(\mathbf{Q}^2)$.
- Reduced sensitivity to Infra Red divergences compared to alternative observables.

arXiv:2301.09351

Strong coupling estimation in multijet events

Extract α_s from **fit of theoretical predictions** of TEEC and ATEEC:

• Fit in bins of $H_T^2 = p_T^1 + p_T^2$ and extract α_s in each bin.

Javier Jiménez Peña - CORFU 2023

Multidifferential dijet cross-section

CMS-PAS-SMP-21-008

2D and 3D dijet production measured in 2016 data.

- 2D: in rapidity y_{max} and invariant mass m_{12} .
- **3D:** rapidity separation y*, total boost y_h and m_{12} or the average dijet $< p_{T} >$.

Cross :

)iff.

Done both for R=0.4 and R=0.8 anti-kT jets.

Unfolded to particle level & compared to fixed order NNLO calculations of pQCD from NNLOJET:

Javier Jiménez Peña - CORFU 2023

Multidifferential dijet cross-section

CMS-PAS-SMP-21-008

Extract PDFs and α_s from measurement.

HERA DIS data used in combination with this measurement for PDF extraction:

- Use only R=0.8 data, more reliable predictions.
- α_s fixed to $\alpha_s(m_z) = 0.118$
- Hera data restricted to Q^2_{min} of 10 GeV.
- General reduction of systematic uncertainties with the use of CMS data.
- Good agreement between predictions with and without CMS data.

Both 2D and 3D results are used to measure $\alpha_s(m_7)$:

2D: $\alpha_s(m_z) = 0.1201 \pm 0.0012$ (fit) ± 0.0008 (scale) ± 0.0008 (model) ± 0.0005 (param.)

3D: $\alpha_s(m_z) = 0.1201 \pm 0.0010$ (fit) ± 0.0005 (scale) ± 0.0008 (model) ± 0.0006 (param.)

Within 1 sigma of global average

Inclusive photon production at 13 TeV

arXiv:2302.00510

Full Run-2 measurement of the inclusive isolated photon production.

Important test of perturbative QCD:

- Constraints on the PDF (especially for gluon-PDF, thanks to $qg \to q\gamma)$

Select isolated photons to **remove photons inside jets**:

• Cone-based isolation: R = 0.2 and 0.4

Dependence of XS on photon isolation studied as function of R, η^{γ} and E_{τ}^{γ} :

Javier Jiménez Peña - CORFU 2023

Inclusive photon production at 13 TeV

Unfold results in **bins of** $|\eta^{\gamma}|$ and **compare** results with different pQCD predictions:

ATLAS

- SHERPA 2.2.2: z + 0,1,2j @NLO + 3,4j@LO
- JETPHOX (NLO) and NNLOJET (NNLO)
- Predictions using different PDF sets.

Results given in two isolation cone-radii and with a finer η^{γ} binning.:

Well described by the fixed-order QCD predictions

in most of the investigated phase-space region.

Javier Jiménez Peña - CORFU 2023

Strong coupling constant with Z boson ATLAS-CONF-2023-015 Briefing

- Full Run-1 dataset (20.2 ifb) at 8 TeV used for precise determination of $\alpha_s(m_z)$.
- Extracted from transverse-momentum distribution of Z bosons: ATLAS-CONF-2023-013.
- Observable: low-momentum Sudakov region $p_T(Z)$ by DY.
- Not included in PDF fits: No problem with correlations.
- Non-zero $p_{\tau}(Z)$ caused by ISR of partons (strong force).

0.4 < |y| < 0.8

|y| < 0.4

ATLAS Preliminary

pp \rightarrow Z 8 TeV. 20.2 fb⁻

Data

Most precise experimental measurement of the strong coupling.

 $\alpha_{s}(m_{z}) = 0.11828 + 0.00084 - 0.00088 (0.74\%)$

First based on N4LLa+N3LO pred. in perturbative QCD.

Strong coupling constant with Z boson ATLAS-CONF-2023-015 Briefing

• Full Run-1 dataset (20.2 ifb) at 8 TeV used for precise determination of $\alpha_s(m_z)$.

τι Δς

• Extracted from transverse-momentum distribution of Z bosons: ATLAS-CONF-2023-013.

2D Z XSvs p_r(Z) and y(Z) 16

Elastic Scattering $\beta^* = 2.5$ km with ATLAS

Arxiv:2207.12246 Physics briefing

Q5

Beam 2

06

B7R1

A7

A8

245 m

ALFA

07

17

C-side

D1

A7R1

A5

A6

D2

04

- ATLAS is also testing low energy QCD predictions with the use of ALFA.
- ALFA subdetector is a pair of tracking detectors situated at 240 m from the IP.
- Each set is housed in a movable Roman Pot that can approach beam up to 1 mm.

- ALFA: Designed to measure protonproton elastic scattering.
- Done with a LHC special run of high β^* : gives the proton beams a very small angular spread.
- Measured differentially in the Mandelstam t variable

Elastic Scattering $\beta^* = 2.5$ km with ATLAS

Arxiv:2207.12246 Physics briefing

- Elastic scattering linked to other processes occurring on proton-proton interactions.
- Total proton-proton cross section (σ_{tot}) measured through optical theorem:

 $\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \frac{d\sigma_{el}}{dt} \bigg|_{t\to 0} t = \text{Mandelstam Variable}$

- Ratio of the real vs imaginary parts of the elastic-scattering amplitude (ρ).
- Complex phase between the Coulomb and the nuclear amplitudes, directly affecting the interference contribution. (CNI)
- Needs the high β^* configuration for sensitivity.

Javier Jiménez Peña - CORFU 2023

Top quark physics

Top quark intro

Top Quark Production Cross Section Measurements

- The top quark is the heaviest elementary particle known.
- The only quark that largely affects the stability of the Higgs mass.
- The only particle with y_t ~ 1: strongly coupled to Higgs sector.
- The only quark that decays before hadronizing: ~free quark
- It does it ~100% through Wtb vertex: allows accessing top quark polarization.
- Large number of production mechanisms: pair production (QCD), single top (EW) and many associated production mechanism.
- Cross-section ranges several order of magnitudes.

LHC is a top quark factory

Extensively studied by

ATLAS and CMS

Status: November 2022

New Run-3 data!

LHC Run 3: σ(tt) at 13.6 TeV

<u>CMS: tī XS at 13.6 TeV</u>

arXiv.2303.10680 Briefing

- Combined analysis: dilepton and lep+jets
- Split by lepton flavour & jet/b-jet multiplicity.
- Data from 27 Jul to 03 Aug 2022: 1.21 fb
- Normalization of **Z-jets** obtained in **sideband CR** with $|m_{\parallel} m_{z}| < 15$ GeV.
- **Two CR for QCD** multijet in lep+jets: nonisolated leptons to derive template, region with only 1 b-jet to extract normalization.
- Simultaneous extraction of b-tag efficiency
- Shift in W mass in I+jets to crosscheck JES.
- Lepton ID efficiencies: T&P from Z+jets events as function of p_τ and |η|
- Luminosity uncertainty is the dominant uncertainty, followed by lepton identification and b-tagging efficiency

 $\sigma(t\bar{t})$ = 882 ± 23 (stat+syst) ± 20 (lumi) pb

ATLAS: Z, tt XS and tt/Z at 13.6 TeV

- Combined extraction of σ(Z→II) and σ(tt):
 ee and µµ channels for Z, emu for tt (1b,2b).
- Also tt/Z XS ratio: reduction of uncertainties and sensitivity to gluon/quark PDFs.
- In situ measurement of ε_b: efficiency to reconstruct +tag exactly 1 b-jet.
- Two profile likelihood fits: either $\sigma(t\bar{t})$ or R(tt/Z).

 $\sigma(t\bar{t}) = 859 \pm 4 \text{ (stat.)} \pm 22 \text{ (syst.)} \pm 19 \text{ (lumi.) pb. (3.4\%)}$

 $\sigma(Z \rightarrow II) = 751 \pm 0.3 \text{ (stat.)} \pm 15 \text{ (syst.)} \pm 17 \text{ (lumi.) pb.}$

 $R(t\bar{t}/Z) = 1.144 \pm 0.006 \text{ (stat.)} \pm 0.022 \text{ (syst.)} \pm 0.003 \text{ (lumi.)}^{-1}$

	Category	Uncert. [%]		
		$\sigma_{t\bar{t}}$	$\sigma^{\rm fid.}_{Z \to \ell \ell}$	$R_{t\bar{t}/Z}$
t	$t\bar{t}$ parton shower/hadronisation	1.1	0.01	1.0
	$t\bar{t}$ scale variations	0.2	< 0.01	0.2
	Top quark $p_{\rm T}$ reweighting	0.6	0.02	0.5
Z	Z scale variations	0.2	0.5	0.3
3kg.	Single top modelling	0.4	0.01	0.4
	Diboson modelling	0.1	0.06	< 0.01
	Mis-Id leptons	0.5	0.1	0.5
Lept.	Electron reconstruction	1.0	1.1	0.5
-	Muon reconstruction	1.5	1.2	0.8
	Lepton trigger	0.4	0.7	0.8
ets/tagging	Jet reconstruction	0.4	0.1	0.3
	Flavour tagging	0.2	0.01	0.2
	PDFs	0.4	0.2	0.4
	Pileup	1.1	1.1	< 0.01
	Luminosity	2.3	2.2	0.3
	Systematic Uncertainty	3.5	3.0	2.0
	Statistical Uncertainty	0.5	0.03	0.5
	Total Uncertainty	3.5	3.0	2.0

ATLAS-CONF-2023-006

Briefing

Top quark mass

Top quark mass intro

- $m_{top} + m_{W} + m_{H}$ measurements: probe the validity of the SM
- Important to determine SM vacuum stability

(not yet including latest W mass measurements)

Direct measurements:

Fixed parameter in the generator: **MC mass**.

Relies on jet, parton shower, non-perturbative effects.

Total or partial invariant mass of top decay products.

Indirect measurements:

Well defined renormalization scheme: e.g. **pole mass**

From cross sections (inclusive or differential)

Javier Jiménez Peña - CORFU 2023

Latest summary plots: ATL-PHYS-PUB-2022-050

Profile likelihood fit of m(top) in I+jets

- For each event, m_f^{fit} is extracted from a kinematic fit.
- m(top) extracted from simultaneous fit to 5 observables with a profile likelihood: In situ constraints of systematic uncertainties: m_t^{fit}, m_w, m_{lb}, m_{lb}/m_t^{fit}, R_{bq}.
- Most precise measurement of the top quark mass to date:
- m(top) = 171.77 +- 0.37 GeV

Template fit of m(top) in dilepton

- **DNN for event reconstruction**: selects right pairing of leptons and b-jets.
- From each event, use only lb pair with largest p_τ^{lb}.
- Further selection: DNN_{High} > 0.65, p_T^{Ib} > 160 GeV and selected lb pair contains b-jet with largest p_T.
- Unbinned likelihood fit calibrated with MC (Powheg+Pythia)
 m_{top} = 172.21 +- 0.20 (stat) +- 0.67 (syst) +- 0.39 (recoil)

	$m_{\rm top} [{\rm GeV}]$
Result	172.21
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.40 ± 0.06
Parton shower and hadronisation	0.05 ± 0.05
Initial- and final-state QCD radiation	0.17 ± 0.02
Underlying event	0.02 ± 0.10
Colour reconnection	0.27 ± 0.07
Parton distribution function	0.03 ± 0.00
Single top modelling	0.01 ± 0.01
Background normalisation	0.03 ± 0.02
Jet energy scale	0.37 ± 0.02
<i>b</i> -jet energy scale	0.12 ± 0.02
Jet energy resolution	0.13 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.11 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.39 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.80 ± 0.06

- New measurement improves Run-1 result.
- Precision limited by modelling and Jet Energy Scale unc.
- New significant unc: radiation recoil scheme

Javier Jiménez Peña - CORFU 2023

Top quark pole mass in tt+jet dilepton events

- Jet emission in ttbar is sensitive to m^{pole}_t.
- Using $\rho \sim 1/M(tt+j)$ to extract the pole mass.
- **MVA** to calculate ρ_{reco} and for S/B discrimination with two hypotheses: tt+j and tt. RNN = s(tt+j)/[s(tt+j)+s(tt)]
- Profile likelihood unfolding, combining several regions.
- **Split** by lepton flavour, jet/b-jet multiplicity, ρ_{reco} and RNN.
- m_t^{pole} = 172.94 +- 1.37 GeV
- Compared to NLO predictions

36.3 fb⁻¹ (13 TeV) Events / 0.05 18- CMS Data tt+0 iet $t\bar{t}$ +jet, 0 < ρ < 0.3 Z+jets 16F $t\bar{t}$ +jet, 0.3 < ρ < 0.45 Single top tī+jet, 0.45 < ρ < 0.7 tt (not dileptonic) 14F t \bar{t} +iet. 0.7 < ρ Other 12F Total uncertainty 10F e±µ∓ $N_{biet} > 0$ $N_{iet} > 2$ Data / Pred. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ρ_{rocc} 36.3 fb⁻¹ (13 TeV $1/\sigma_{t\bar{t}+jet} \ d\sigma_{t\bar{t}+jet}/d\rho$ 5 CMS Data tī+jet NLO m, = 175.5 GeV 4 ABMP16NLO tī+jet NLO m, = 169.5 GeV tī+jet NLO m, = 172.5 GeV ----- tī POW.+PYT. m, = 172.5 GeV Pred. / Data 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 28

arXiv:2207.02270

SM Effective Field Theory

Effective Field Theory extension of SM

EFT operator

 $\frac{C_i^{(6)}O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$

Lack of clear evidence of new physics at the LHC:

 New physics may lie above the experimental energy scale

Indirect searches may provide hints! SMEFT extends the SM Lagrangian

 $\mathcal{L}_{SM}(\varphi) + \mathcal{L}_{Dim6}(\varphi) + \cdots$

Wilson

 $\mathcal{L}_{\mathrm{Eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{n=1}^{\infty}$

coefficients

UV scale

Interesting to study EFT with top quarks:

Large mass and Yukawa coupling O(~1). Rich environment of production modes. Access to top quark polarization.

A

Charge asymmetry in top production

arXiv:2208.12095

31

 Slight central-forward difference in rapidity between top quarks and antiquarks in top pair production at the LHC, quantified as:

 $A_{C} = \frac{N(|y_{t}| > |y_{\bar{t}}|) - N(|y_{t}| < |y_{\bar{t}}|)}{N(|y_{t}| > |y_{\bar{t}}|) + N(|y_{t}| < |y_{\bar{t}}|)}$

Arising from interference effects among QCD diagrams at NLO:

Introduced by quark-antiquark initiated production, but diluted by gluon-gluon production.

Asymmetries exhibit kinematic dependence, enhanced in BSM:

Sensitivity of AC to EFT coefficients complementary to cross section measurements

ATLAS measurement with Full Run 2 data: Single and dilepton.

• **Single lepton:** split by b-jet multiplicity and boosted/resolved jet topologies. Use of a BDT for top reconstruction.

• **Dilepton:** split by lepton flavour and b-jet multiplicity. Also measure lepton charge asymmetry.

$$A_{\rm C}^{\ell\bar{\ell}} = \frac{N(\Delta|\eta_{\ell\bar{\ell}}| > 0) - N(\Delta|\eta_{\ell\bar{\ell}}| < 0)}{N(\Delta|\eta_{\ell\bar{\ell}}| > 0) + N(\Delta|\eta_{\ell\bar{\ell}}| < 0)}$$

$$\Delta |\eta_{\ell\bar{\ell}}| = |\eta_{\bar{\ell}}| - |\eta_{\ell}|$$

Javier Jiménez Peña - CORFU 2023

Charge asymmetry in top production

arXiv:2208.12095

 Δ |**y**| (Δ |**η**|) distributions corrected to parton level using Fully Bayesian Unfolding approach

 A_{c} measured inclusively and **differentially** as a function of m_{tt} , $p_{T,tt}$, $\beta_{z,tt}$ in the dilepton, lepton+jets channel and simultaneously.

 $A_{c} = 0.0068 \pm 0.0015 (4.7 \sigma \text{ from } A_{c} = 0)$

 $A^{\ell\ell}_{\ C}$ measured inclusively and differentially as a function of $m_{\ell\ell}$, $p_{T,\ell\ell}$, $\beta_{z,\ell\ell}$.

All results are compatible with SM predictions.

Charge asymmetry also in:

tt+gamma: arXiv:2212.10552 ttW: ATLAS-CONF-2023-019

32

Combined results interpreted in the SMEFT framework:

 Constraint from the differential measurement: factor >2 stronger than the one from inclusive measurement (sensitivity increases with m_#)

EFT search in top with additional leptons ^{CI}

CMS-PAS-TOP-22-006 Briefing

- A search of new physics effects using the EFT framework.
- Targets top quark production with additional final-state leptons.
- EFT effects incorporated into event weights of MC samples:
 - Provides detector level predictions with correlations and interference between EFT operators and SM.
- A total of 26 WCs: 4 heavy quarks and 2 heavy quarks with 2 light quarks, 2 leptons or bosons.
- Included processes: ttH, tHq, tttt, ttll, ttlv & tllq (ttZ, ttW & tZq)
- Data is divided into several categories based on lepton, jet and b-jet multiplicities, total lepton charge
- 3-lepton category further divided into On-/Off-shell Z boson.
- A total of **43 event categories**: increases statistical power given the different mixtures of physic processes.

Event categorization

EFT search in top with additional leptons CMS-PAS-TOP-22-006 Briefing

Sensitivity to EFT is given through the **event yields** of each category: **Quadratic with WCs**. To increase sensitivity to EFT, each of the 43 event categories is **binned into a differential distribution**. About a **factor two improvement in sensitivity**.

Two kinematical variables:

1) The **maximum transverse momenta** among all possible pairs of leptons and/or jets: $p_T(lj0)$

• Sensitivity to a broad range of EFT effect that grow with energy. Used in most categories.

2) Transverse momenta of the on-shell Z boson: $p_T(Z)$

• Sensitivity to EFT operators involving Z boson: modify Z kinematics. Used in 3I on-shell.

Background dominated by **WZ production:** estimated simulations and validated in **CRs.** Non-prompt leptons contribution estimated using data driven techniques.

EFT search in top with additional leptons

- **Profile Likelihood fit** across **all bins**, each treated as an independent Poisson measurement.
- Each bin total **yield parametrized quadratically** by the 26 WCs.
- Systematic uncertainties treated as NPs.
- Two approaches for 1σ and 2σ confidence levels:
 - Rest of the WCs profiled.
 - Rest of the WCs fixed to SM value (=0)
- 2D scans for a subset of WCs.

All measured values are in agreement with SM.

CMS-PAS-TOP-22-006 Briefing

Rare processes

Rare process intro

The study of **rare processes allow to test SM predictions in high energy regimes** where deviations from the SM could be favored.

Javier Jiménez Peña - CORFU 2023

Inclusive σ(ttW) at 13 TeV

arXiv:2208.06485

Events selected in two main regions:

2 SS leptons (semi-leptonic ttbar decay) :

- Dominant bkg from: ttH & ttZ, charge mis-ID, nonprompt lepton.
- Dedicated multiclass NN to separate signal and bkgs. •

<u>3 leptons</u> (dileptonic ttbar decay) :

Events categorized based on the number of b jets and lepton charge.

ttW extracted doing a fit to all SRs and CR.

- NN score used in 2l, and m(3l) in 3l. ٠
- Dominant uncertainty from e charge mis-ID, lumi, b-• tagging and normalization of ttH, VVV and ttVV.
- The large number of regions employed in the fit allows to constrain the uncertainty.

250

300

350

m(3t) [GeV]

リフ

400

200

0.8 0.6

50

100

150

Inclusive σ(ttW) at 13 TeV

- σ measured for ttW and also for ttW⁺ and ttW⁻ together with the ttW⁺/ttW⁻ ratio.
- Obtained value of $\sigma(ttW)$ is slightly higher than the SM expectations.
- Better compatibility with the NLO (EW&QCD) prediction obtained with an improved NLO FxFx-merging scheme.

 $\sigma(ttW)$ = 868 +- 40 (stat) +- 51 (syst) fb. Compatible at 2 σ with SM.

• Main uncertainties: Statistical, ttH norm, luminosity, b-tagging and charge mis-ID.

Javier Jiménez Peña - CORFU 2023

41

- Similar measurement from ATLAS: 2LSS or 3L
- Split by lepton charges-flavors, and jet and b-jet multiplicities:
- Simultaneous profile likelihood fit to data in 56 Signal and 10 Control Regions.

400

450

500

550

600

 $\sigma(t\bar{t}W^{+})$ [fb]

650

700

750

800

Javier Jimén

Differential σ(ttW) at 13 TeV

- Differential XS extracted: Unfolded to particle-level with a profile likelihood method.
- Several observables are compared to theoretical predictions: e.g. $|\Delta \eta_{\parallel, SS}|$
- Generally in good agreement with the normalised differential cross-section results.
- Some tensions observed in normalised XS, but overall agreement is good when considering statistical and systematic correlation: p-value > 0.5

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-07 02:15:53.337408 GMT Run / Event / LS: 322356 / 153159025 / 79

CMS Briefing ATLAS Briefing

First observation of 4 tops

Four top production at the LHC

- NLO QCD: σ(tt tt) = 12 fb ±20% [JHEP 02 (2018) 031]
- NLO+NLL: $\sigma(t\bar{t}t\bar{t}) = 13.4 \text{ fb } \pm 11\% \text{ [arXiv:} 2212.03259]$

$\sigma(tttt)/\sigma(tt) \approx 10^{-5}$

Natural sensitivity to many BSM models

- Top quark-higgs Yukawa coupling and its CP properties.
- EFT four heavy fermion operators.

Final state: high multiplicity of jets and b-jets

 Analysis strategy varies with the number of leptons from top quark decays

- Evidence observed both by ATLAS and CMS in preliminary analyses
 - Motivated a reanalysis of Run 2 dataset

Javier Jiménez Pe

00000

gooddoo

g. 0000000

g. 0000000

g_0000000

Η

Multilepton: the golden channel

Multilepton final state is the most sensitive channel:

• Re-analyze various channels in ATLAS and CMS: 2LSS, 3L and 4L.

Physical backgrounds: mainly ttX: ttW, ttH and ttZ + jets.

- CMS: Simultaneous fit of $\sigma(tttt)$, $\sigma(ttZ)$ and $\sigma(ttW)$. MC for ttH.
- ATLAS: MC for ttZ and ttH. A combination of simulation and data driven approach for ttW+jets (hard to model)

Instrumental backgrounds:

Non prompt / fake leptons:

- CMS: e/µ $p_{_{T}}$ and $|\eta|$ parametrization.
- ATLAS: Templates from MC to extract normalization.

Charge Mis-Identification:

• Using same sign $Z \rightarrow II$ sideband.

Backgrounds

Javier Jiménez Peña - CORFU 2023

Event selection and strategy

CMS: Event categorization depending of jet and b-jet multiplicities and $H_T = \Sigma_{lep iet} p_T$ Use of a multiclass BDT to split events in tttt. ttX and tt

ATLAS signal region: >= 6 jets, >= 2 b-jets, and $H_{\tau} >= 500 \text{ GeV}$

BDT score tt

CMS-PAS-TOP-22-013 arXiv:2303.15061

Javier Jiménez Peña - CORFU 2023

Better sensitivity 46 than BDT (12%)

CMS ATLAS EXPERIMENT

Signal extraction

CMS-PAS-TOP-22-013 arXiv:2303.15061

ATLAS and CMS have observed (individually) the production of **four top quarks for the first time**!

ATLAS: simultaneous profile likelihood fit to data to GNN score and 8 CR.

$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}(\text{stat}) \,{}^{+4.6}_{-3.4}(\text{syst}) \,\text{fb} = 22.5^{+6.6}_{-5.5} \,\text{fb}.$$
$$\mu = 1.9 \pm 0.4(\text{stat}) \,{}^{+0.7}_{-0.4}(\text{syst}) = 1.9^{+0.8}_{-0.5}.$$

CMS: simultaneous profile likelihood fit to data in SR and CR. Fitted distributions include: • BDT scores in the SR.

- BDT output score of ttbar in CR
- Jet multiplicity in Z CR (3I and 4I)

SM agreement

$$\sigma(pp \to t\bar{t}t\bar{t}) = 17.9^{+3.7}_{-3.5} (stat)^{+2.4}_{-2.1} (syst) \, \text{fb}, \quad 1.1 \, \sigma$$

$$\sigma(pp \rightarrow t\bar{t}W) = 997 \pm 58 \text{ (stat)} {}^{+79}_{-72} \text{ (syst) fb}, \quad 2.3 \text{ }\sigma$$

$$\sigma(pp \rightarrow t\bar{t}Z) = 1134^{\,+52}_{\,-43}\,\text{(stat)}\pm\text{86}\,\text{(syst)}\,\text{fb}.\quad 2.2\;\sigma$$

Uncertainties and interpretation

Statistical and signal modeling are the largest uncertainties in both measurements.

From the experimental side, b-jet tagging and the jet energy scale.

Additional important uncertainties are:

ATLAS: Parton Shower and Hadronization, ttW modeling.

CMS: Modeling of ttX+jets and ttX+b-jets.

CMS: small 2σ excess for **ttZ** and **ttW** as in dedicated measurements.

ATLAS: derives 95% CL for **ttt** production assuming the SM and measured σ (tttt).

Results also used to set BSM limits: **Top Yukawa** for example:

Javier Jiménez Peña - CORFU 2023

Conclusions

ATLAS and CMS are extensively testing the SM with a wide program of measurements. A selection of results of QCD and top physics have been presented. No BSM signs unfortunately.

Larger datasets allow to go differentially (2D and 3D): allow to further test theory predictions and get a better understanding of fundamental QCD.

The properties of the top quark are studied in detail: Mass, XS, Asymmetries, polarization...

EFT SM as tool to find sign BSM signs: more global approaches are been pursued.

Rare events are started to be studied in detail. Some observed for the first time: Four tops.

Machine learning techniques are increasingly important.

And Run-3 is ongoing with plenty of new data to come.

Many thanks for your attention!

Conclusions

• To be written

Many thanks for your attention!

BACK UP SLIDES

Single top quark polarization

- Full 13 TeV data (139 fb⁻¹) used to measure single top quark polarization.
- In the t-channel at LO, top (antitop) quarks are produced with their spin aligned along the direction of the spectator (incoming) quark.
- The spin information is transferred to the top quark decays.
- 3D space divided into 8 Octants. Polarization vector extracted from ML fit.

top $P_{x'} = 0.01 \pm 0.18, P_{y'} = -0.029 \pm 0.027, P_{z'} = 0.91 \pm 0.10$ antitop $P_{x'} = -0.02 \pm 0.200, P_{y'} = -0.007 \pm 0.051, P_{z'} = -0.79 \pm 0.16$

 Unfolded angular distributions at particle level used to test SM EFT extension of Wtb vertex.

$$C_{tW} \in [-0.7, 1.5]$$
 and $C_{itW} \in [-0.7, 0.2]$

Major syst: JER, JES & signal and background modeling.

Proving EFT with ttZ vertex in multi lepton

- Full 13 TeV data (138 fb⁻¹) to test SM EFT extension of ttZ vertex.
- Five Dim-6 operators considered: O_{tZ}, O_{tW}, O³_{φQ}, O⁻_{φQ}, O_{φt}

Multiclass

Extensive use of MVA (NNs):

• Multiclass classifier divides SR in tZq, ttZ and bckgd SRs.

ttZ

CMS-TOP-21-001

tZq w

tWZ

Briefing

- **Binary classifiers** separate SM events from WCs \neq 0.
- Used to design observables with optimal sensitivity.
- Compatibility of WCs with data from a simultaneous ML fit to data in six categories (4 SR, 2 CR)
- Done for each WC, fixing the rest or for all 5 WCs free.
 In agreement with SM.

SR

Four top production at CMS: All Hadronic

- First time all hadronic channel used in 4-top searches
- SR divided depending on top topology (boosted and resolved) and in ${\rm H_{\tau}}$

CRs used in VR

 $N_{\rm b}$

CRs used in SR

VR

 Main backgrounds from QCD multijet and ttbar+jets: Data driven estimated in CRs with different jet and bmultiplicities.

Combination with results from other final states: $\sigma = 17 \pm 4$ (stat) ± 3 (syst) fb

Javier Jiménez Peña - CORFU 2023