QCD and top phenomena at future colliders

Stefan Kluth MPI für Physik, München Corfu2023 Workshop on Future Accelerators 25.04.23

1 Overview 2 Top properties 3 Z and W decays 4 Soft FFs 5 Jets and event shapes 6 √s < m₇ 7 Scaling violations 8 Quark mass running 9 eP colliders 10 Di-jets in pp 11 Drell-Yan in pp 12 Summary

[PDG, PTEP 2020 (2020) 083C01, updated in D. d'Enterria, S. Kluth, G. Zanderighi (eds.), arxiv: 2203.08271]

1 Introduction

Summary from " α_s (2022) – Precision measurements of the QCD coupling" at ECT* (Trento) 31.01.-04.02.2022

FCC-ee impact on most categories Expect $3 \cdot 10^{12}$ hadronic Z decays \Rightarrow $6 \cdot 10^{11}$ Z \rightarrow bb, 10^{11} T pairs, ... $5 \cdot 10^{8}$ W decays, 10^{6} tr on threshold

e FCC-hh, FCC-eh (LHeC)

2 Top quark properties in e^+e^- Threshold scan: ~10⁶ tt events, ultimate measurement of m, and Γ_1

[FCC coll., Eur. Phys. J. C79 (2019) 474, arxiv: 2209.11267]

 $m_{t} = (171.5 \pm 0.017_{stat} \pm 0.007_{cms} \pm 0.005_{\alpha S} \pm 0.040_{theo}) \text{ GeV}$ $\Gamma_{t} = (1.37 \pm 0.045_{stat} \pm 0.003_{cms} \pm 0.005_{\alpha S} \pm 0.040_{theo}) \text{ GeV}$ $\Delta \alpha_{S}(m_{Z}) \approx 0.0002 \text{ needed, unambigous theo. definition of } m_{t}$ S. Kluth: QCD and top phenomena

3 Z and W decays in e⁺e⁻

S. Kluth: QCD and top phenomena

3 Z and W decays

4 Soft FFs in e⁺e⁻

Charged hadrons momentum spectra x = $2E_h/\sqrt{s}$ FF: $D_{a,h}(z,Q)$, z = p_h/p_a , Q = \sqrt{s}

FCC-ee: $\Delta \alpha_{S,exp} < 0.1\%$, full NNLO+NNLL $\Rightarrow \Delta \alpha_{S,theo} \le 0.001$? With c, b, (t) tags: study heavy quark fragmentation

[R. Perez-Ramos, D. d'Enterria, arxiv: 2203.08271]

4 Soft FFs in e⁺e⁻

Heavy quark Q fragmentation: dead cone effect

S. Kluth: QCD and top phenomena

5 Jets and event shapes in e⁺e⁻

$$\begin{split} 1/\sigma d\sigma/dy &= dA/dy \alpha_{\rm S}(Q) + \\ dC/dy \alpha_{\rm S}(Q)^2 + dC/dy \alpha_{\rm S}(Q)^3 + {\rm h.o.} \\ &+ {\rm scale} + "\sigma_{0 \rightarrow {\rm tot}}" \end{split}$$

NNLO QCD (+resum.) needs np (hadronisation) corr. ~1/Q

Same structure for other event Ty shapes and for jet production Δc rates

MC-based vs analytic models

Typical differences MC vs analytic $\Delta \alpha_{\rm S}(m_{\rm Z})_{\rm np-model} = O(1\%)$ [e.g. A. Hoang et al., Phys. Rev. D91 (2015) 9]

5 Jets and event shapes

Hadronisation unc. within Fitted SCET based model

Significant deviations from world average $\alpha_s(m_z) = 0.1179 \pm 0.0009$

[A. Hoang et al., Phys. Rev. D91 (2015) 9]

NNLO + N3LL' (SCET), LEP/SLD/PETRA/TRISTAN data: T: $\alpha_s(m_z) = 0.1134 \pm 0.0002_{exp} \pm 0.0005_{had} \pm 0.0011_{theo}$ C: $\alpha_s(m_z) = 0.1123 \pm 0.0002_{exp} \pm 0.0007_{had} \pm 0.0014_{theo}$

5 Jets and event shapes

Linear power corrections in large n_f limit in 3-jet region \Rightarrow constant shift of pert. prediction replaced by observable dependent shift $\zeta(.)$

significant $\Delta \alpha_s(m_z)$ w.r.t. const. shift

See also: new (groomed) observables, [S. Marzani, D. Reichelt, S. Schumann, NLO+NLL-PS MCs G. Soyez, arxiv: 2203.08271]

FCC-ee: $\Delta \alpha_{\text{S,exp}} < 0.1\%$, $\Delta \alpha_{\text{S,had}} < 1\%$?, $\Delta \alpha_{\text{S,had}} < 1\%$?, $\Delta \alpha_{\text{S,hadron masses}} \approx 1\%$?

6 FCC-ee with $\sqrt{s} < m_z$

Proposal for Snowmass 2021 [Collect 10⁹ events with FCC-ee at \sqrt{s} = 20, 30, 40, ... GeV

Benefactors:

MC tuning and soft QCD (\rightarrow 1.3) \Rightarrow hadronisation systematics

 R_{I}^{γ} at high precision

FFs: scaling violation, long., transv., asym., soft FFs $\xi = \ln(1/x)$, ...

v] In-situ calibrations?, EW, etc pp

[A. Banfi et al., www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF5_EF4_Andrii_Verbytskyi-208.pdf]

6 R_1^{γ} at $\sqrt{s} < m_z$ with FCC-ee

 $R_{I exp}^{\gamma} = \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ $R_{I theo}^{\gamma} = 3\sum_{i} q_i (1 + \alpha_S/\pi + 1.441(\alpha_S/\pi)^2 + ...)$ [A.V. Nesterenko, in arxiv: 2203.08271]

 $\Delta R_{I}^{\gamma}/R_{I}^{\gamma} \approx \Delta \alpha_{S} \Rightarrow \Delta \alpha_{S,stat} \approx 0.0001$ with $\Delta R_{I}^{\gamma}/R_{I}^{\gamma} \approx 10^{-4} \Rightarrow O(10^{8})$ events

[FCC coll., Eur. Phys. J. C79 (2019) 474]

$$\begin{split} &\Delta R_{I}^{~Z}/R_{I}^{~Z} \approx 5 \cdot 10^{-5} \text{ FCC-ee, dominated} \\ &\text{by lepton acceptance} \Rightarrow \text{similar for } R_{I}^{\gamma} \\ &\Rightarrow \Delta \alpha_{\text{S,exp}} \approx 0.0001 \end{split}$$

Pure γ couplings, low scale \Rightarrow less BSM "pollution"

 $\Delta \alpha_{s,theo} \approx 0.0002$ as for $R_{I}^{z,W}$ ($\rightarrow 1.2$)

7 Scaling violation in hard FFs

Charged hadrons h with scaled momentum $x = 2E_h/\sqrt{s}$ at various $\sqrt{s} = Q$

 $1/\sigma d\sigma/dx = \int_0^1 \sum_f C_f(z, \alpha_s(Q)D_f(x/z) dz/z)$

LEP (ADO) NLO DGLAP analyses: $\alpha_s(m_z) = 0.1192 \pm 0.0056_{exp} \pm 0.0070_{theo}$

FCC-ee statistics and systematics \Rightarrow exp. unc. $\Delta \alpha_{s,exp} < 1\%$ (or better? $\sqrt{s} < m_{2}$?)

Today NNLO DGLAP for proton pdfs \Rightarrow theo. unc. $\Delta \alpha_{s,theo} \approx 0.001$? (N3LO DGLAP?) S. Kluth: QCD and top phenomena

S. Kluth: QCD and top phenomena

8 Quark mass running: top

Measure $d\sigma/dm_{t\bar{t}}$ in pp collisions: $m_{t\bar{t}}^2 = 2m_t^2 + 2(E_t E_{\bar{t}} - p_t \cdot p_{\bar{t}})$

Expect much larger $m_{t\bar{t}}$ reach with FCC-hh

[CMS, Phys. Lett. B803 (2020) 135263]

 $\begin{array}{l} \textbf{10 Di-jets in pp} \\ \text{Anti-k}_t \text{ jets R=0.4} \\ \text{p}_{t, jet1} > 440 \text{ GeV}, \text{ p}_{t, jet2} > 60 \text{ GeV} \\ \chi = \text{cot}^2(\theta^*/2) \approx e^{(\eta 1 - \eta 2)} \end{array}$

Expect much larger m_{jj} reach at HL-LHC and FCC-hh (\approx 50 TeV)

Searches, but also (absence of) quark substructure

[ATLAS, Phys. Rev. D96, 052004 (2017)]

S. Kluth: QCD and top phenomena

11 Drell-Yan in pp

12 Summary FCC et al great potential for QCD

- Running strong coupling and quark masses
- FCC et al ultimate top quark measurements
- FCC-ee, ep colliders (FCC-eh, LHeC) and Lattice QCD for $\Delta \alpha_s(m_z) \approx 0.1\%$
- FCC-ee low energy ($\sqrt{s} < m_z$) runs promising!

1.2 Inclusive: τ decays

Moments of vector (even πs) and axial-vector (odd πs) "spectral functions" with N3LO QCD + np terms $\Rightarrow \alpha_s(m_\tau) \Rightarrow \alpha_s(m_z)$

m_top: ee: top \rightarrow ttbar threshold scan, top event shapes, etc Hh: X + leptons, boosted top jets, groomed top jets

Gamma_top: ee: threshold scan

3.3 single top