

Beyond the SM searches: current status from the experiment side

Keti Kaadze (Kansas State University) on behalf of the ATLAS and CMS **Collaborations**

CORFU2023 Workshop on Future Accelerators April 25, 2023

Introduction

- The Large Hadron Collider is extremely powerful instrument to study fundamental processes at the energy frontier
- Improve precision of the SM processes
- Have an access to rare processes
- Discover new processes for the first time
- Very successful Run 1 and 2 at the LHC
	- $\sqrt{s} = 8 \text{ TeV}$, Lumi = ~20/fb
	- \sqrt{s} = 13 TeV, Lumi = ~140/fb

Multipurpose detectors with

- Central tracking
• Calorimeter
- Calorimeter
• Muon detect
- Muon detectors

Excellent performance even in high pileup environment with over 90% data-taking efficiency.

Standard Model Production Cross Section Measurements

Status: February 2022

What the Higgs does not tell us? at least, so far…

Why Higgs mass is what it is?

Higgs mass has calculable quantum corrections from highest mass scale in theory

- Are there other low/high mass Higgs particles?
- Why there are three generations of fermions?
- Can EM, weak, strong (& gravity) be unified?
- What happened to antimatter?

5

If the universe began from pure energy, we should have equal amounts of matter and antimatter. But we see no naturally occurring anti-matter.

ons **Bos**

And, also Dark Matter…

With the Higgs discovery we have 'just' understood ~5% of our universe

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

ATLAS Preliminary

What we are going after?

Looking for Unknown

 M_X

Mass

Limited by CME Limited by data Limited by detector acc.

Focus

- I aim to present some of the latest results from ATLAS and CMS experiment focusing on
	- New methods and tools
	- Searches over broad mass and coupling range
	- Searches for long-lived particles
- Searches to explain flavour anomalies
- All these are collected with a theme of "interesting and exciting hints"...
- Complete sets of BSM results can be found at
	- **ATLAS** <https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults> <https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults> <https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults>
	- CMS <https://twiki.cern.ch/twiki/bin/view/CMS/B2G> <https://twiki.cern.ch/twiki/bin/view/CMS/SUS> <https://twiki.cern.ch/twiki/bin/view/CMS/EXOTICA>

Data Scouting

• Huge amount of data from the LHC. Trigger selection is gives priority to high pT objects

 0.1

 0.01

Used for both searches for hadronic and multi-muon final states

 $m(X)$ [GeV]

1 KHz

 1 MB/ev

IOO KHz

Huge reduction in rate. We might be losing good events

 $\overset{\scriptscriptstyle{W}^{\prime}}{\overbrace{\hspace{2.8cm}}^{W^{\prime}}}$

Heavy SM-like W' resonance

number of b jets jet_{top} is a b-tagged jet jet_W, is a b-tagged jet

 $n₀$

- Decaying preferentially to the third generation particles
- Considering mass range 2 6 GeV, different width and chirality.
- Constraining neutrino p_T by m_W; deciding a jet to be from top according to three body mass to be consistent to m_t , smallest ΔR between lepton and jet, picking lower pT jet.

Signal-enriched regions

 no

Largest excess around 3.8 TeV for 1% width and RH scenario

type of category (label) Control region (R0)

Keti Kaadze, Kansas State University

 Ω

Looking for very high mass resonance Y → XH → qqbb

- 2HDM, Extra Dimensions, Heavy Vector Triplets
- X and H could be boosted for specific $Y(1.5 6 \text{ TeV})$ and X(65 - 3000 GeV) masses; Considering both resolved and boosted topologies
- Novel jet-level implementation anomaly detection based on unsupervised ML training is used to select boosted X particles incompatible with the SM background.

 $Z'(W')$

High Mass Searches

- Heavy Vector Triplet (HVT), Spin-1 W' and Z', Spin-0 Radion
- Boosted topologies are used
- Two aK8 jets with or w/o two aK4 jets
- 3D observables: $M_1(aK8):M_2(aK8):M_3(aK8_1,aK8_2)$
- Events categorised based on ML analysing substructure of large-radius jets from W, Z, and H

Keti Kaadze, Kansas State University

High Mass Searches

- EW Singlet, 2HDM, MSSM predict di-H resonances
- Combining resonant Higgs pair-production searches.
	- bb $\gamma\gamma$ final observable m_{$\gamma\gamma$}. Sensitive at low mass region. Search region: 251 - 1000 GeV.
	- bb $\tau \tau$ ($\ell \tau$ _h and τ _h signatures) final observable MVA. Sensitive at intermediate mass region. Search region: 251 - 1600 GeV.
	- bbbb final observable m_{HH}. Sensitive at high mass region. Considering both 300 200 resolved (search region 251-1500 GeV) and boosted (search region 900-3000 GeV) topologies.

q , 0000000000000 q ,00000000000 **ATLAS** Preliminary \sqrt{s} = 13 TeV, 126 - 139 fb⁻¹ Spin-0 Observed limit (95% CL) Expected limit (95% CL) Comb. exp. limit \pm 1 σ Comb. exp. limit $\pm 2\sigma$

1000

2000

3000

 m_X [GeV]

 \rightarrow HH) [fb]

 $10⁴$

 $\frac{8}{5}$ 10³

 10^{2}

 $10⁷$

 $10⁰$

dddd $b\bar{b}\tau^+\tau^-$ - bbvv

- Combined

500

[ATLAS-CONF-2021-052](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-052/)

- Motivated from ED, NMSSM, Two-Real-Scalar-Singlet extension of SM (TRSM): $X \rightarrow HH$ (bulk-R) or HY(NMSSM)
- Focusing on kinematic region where: $m_Y < m_X$ m_H ; $-300 < m_X < 1$ TeV, 90 $< m_Y < 800$ GeV
- Using ML techniques to discriminate against major ttH and other non-peaking backgrounds Deviation from the bkg at

- High mass scalar H→WW decaying leptonically
- Using DNN for classification between signals and bkgs
- Using m_T from DNN as final observable
- Interpretations: SM-like couplings/decays, 2HDM/MSSM
- Different width scenarios (0.1-10%); Interference with WW continuum and the SM H→WW is taken into account
- f_{VBF} is used as free parameter

[CMS-PAS-HIG-20-016](http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-20-016/index.html)

 $Mild$ excess in the mass range 400 - 1200 GeV for all f_{VBF} scenarios

17

Events 200 **ATLAS** Preliminary \bullet Data $\overline{}$ Signal sstt $\overline{}$ **ATLAS** Preliminary \bullet Data Signal ttc \sqrt{s} = 13 TeV, 139 fb Signal ttg Signal ttt $100 - \sqrt{s} = 13$ TeV, 139 fb⁻¹ Signal ttt Signal tttg าล∩่⊧ Search in final states with Signal tttt Signal tttq g2HDM q2HDM Signal tttt \blacksquare Four top Four top \blacksquare tł̃W $160 2\ell$ SS - - CATttt 3ℓ + + CATttt \blacksquare tt̄W ĪtīН $\overline{\mathsf{t}\mathsf{t}}$ t $\overline{\mathsf{t}}$ (Z/ γ^*) Post-Fit 80 - Post-Fit $\mathsf{H}(Z/\mathsf{v}^*)$ $\overline{\Pi}$ tty^{*}(low mass) 140 $\overline{\mathsf{T}}$ tty^{*}(low mass) **Diboson** multi-leptons and b-jets \blacksquare HFµ n HFel \blacksquare HFu Mat Conv 120 **HFel** Mat Conv \Box QMisID 60 \Box OMisID \Box Other □ Other ///Uncertainty 100 ---- Pre-Fit Bkad **I** Indertainty Pre-Fit Bkad 2HDM, heavy Higgs with FCNH couplings: 80 60 ρ_{tt} , ρ_{tc} , ρ_{tu} , the former two can explain 40 20 baryon asymmetry. 20 Data / Pred. Data / Pred. **GOODOOOOOO GOODOOOOOO** H^{\perp} **COOOOOOOOO** 0.1 $0.2 \quad 0.3$ $0.4\quad 0.5$ 0.6 $0.7\quad 0.8$ 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ρ_{tq} **DNN**^{SB} **DNN**^{SB} ℓ/ν Improving indirect constraints set on ρ_{tt} , ρ_{tc} , ρ_{tu} Interpreted in R-Parity violating SUSY. from Higgs measurements, B physicsMotivated by flavour anomalies $\rho_{tt}/\sum_i \rho_{ti} = 1$ Observed significance [o] **ATLAS** Preliminary Events categorised based on N_{ℓ} , total charge, DNN^{cat} $m_{\text{H}} = 1000 \text{ GeV}$ pol RBxs 2.5 **ATLAS** Preliminary 0.8 Prediction **ATLAS** Preliminar Signal sst Signal tto \sqrt{s} = 13 TeV, 139 fb⁻¹ Observed limit \sqrt{s} = 13 TeV, 139 fb Signal tt \blacksquare Signal ttto Signal tttt $10¹$ q2HDN Expected limit \Box Four top \blacksquare ttW ∃tīН 95% C.L. limits 10° Post-Fit \Box tt(Z/y*) \Box tty*(lov Expected limit $\pm 1\sigma$ \Box HFel a₂HDM Expected limit $\pm 2\sigma$ \Box QMisID Fakes $2.0 \sigma^2$ -- Pre-Fit Bkg ∠Uncertai 10 1.5 10 2.5σ $2.75\,\sigma$ $\frac{1}{2.81}$ σ 10^{-} 0.5 ρ_{μ} =0.4, ρ_{μ} =0.2, ρ_{μ} =0.2 Data / Pred. 200 300 400 500 600 700 800 900 1000 $\rho_{tu}/\sum_i \rho_{ti} = 1$ ρ_{tc} $\sum_{i} \rho_{ti} = 1$ m_H [GeV] Chosen benchmark couplings could $\rho_{tt} = 0.32$, $\rho_{tc} = 0.05$, $\rho_{tu} = 0.85$ explain high ttW and tttt yields observed by ATLAS

Lepton Flavour Anomalies

- Longstanding hint $(~3$ σ) of a deviation in lepton flavour universality test
- LFU not sufficiently tested in heavy quark decays

The ratio is sensitive to charged Higgs or LQ

$$
R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^- \bar{\nu}_{\mu})}
$$

- Deviation wrt. the SM is at 3.2 σ;
- Perfect agreement between LHCb measurements

- fermions motivates searches in fine states with τ , b-jets, top-quark decays..
- Combined search for pair, single, non-resonant production
 $S_{\text{T}}^{\text{MET}} = p_{\text{T}}^{j1} + p_{\text{T}}^{e/\mu/\tau} + p_{\text{T}}^{\tau} + p_{\text{T}}^{\text{miss}}$ 3.4 σ excess found at high

$Di-\tau$ search over wide mass range

- Search in di- τ mass spectrum is motivated from additional Higgs in context of MSSM, non-resonant VLQ production
	- Interference with the SM $\tau\tau$ continuum taken into account

Vector-Like Leptons

 γ/Z

W

Motivated from flavour anomalies

- VLL decay via vector leptoquarks, which couple dominantly to the third generation
- Categorise by number of b-jets and τ -leptons
- Using DNN to discriminate against QCD and tt backgrounds

Vector-Like Quarks

[CMS arXiv:2201.02227](https://arxiv.org/pdf/2201.02227.pdf)

- VLQ could solve hierarchy problem
	- Searching in 0.6-1.8 TeV mass range; multiple width scenarios
	- Depending on T mass considering resolved and merged topologies

Why Long-Lived Particles Searches?

- We already have some long-lived particles around us. Could there be more of those perfectly motivated
	- Small couplings
	- Suppressed decay phase space
- So far no evidence for new physics. Experiment perfectly agrees with the Standard Model. We need to look in all possible directions.

How to Find LLPs?

- Signatures define search strategy
- Could be light or heavy
- Could travel fast or slow
- Could decay to quarks, gluons, or leptons, or even invisible particles (missing transverse momentum)
- Main handles: timing, displacement, and ionisation

Every sub-system important
distance travelled = $\beta \gamma \times c\tau$

Keti Kaadze, Kansas State University

26

[ATLAS arXiv:2205.06013](https://arxiv.org/pdf/2205.06013.pdf)

 \rightarrow \widetilde{g} \widetilde{g} (R-hadron) $\Delta m(\tilde{g}, \tilde{\chi}^0) = 30 \text{ GeV}$

Long-Lived Particle Searches

- LLPs arise in models of SUSY with compressed spectra or weakly coupled RPV, Hidden Valley, DM, QCD Axions,…
- Search for massive, charged long-lived (>1ns) particles 1600 1400 1200F 1000 Excess 1.1-2.8 TeV corresponding to 1.4 TeV mass Density [a.u. 2.2 0.7±0.4 evt expected | 7 evt observed $m(\widetilde{\chi}_1^\pm)$ [GeV] **ATLAS** Simulation $2E$ \sqrt{s} = 13 TeV $m = 2.2$ TeV, Gluino 3.6 Z (3.3 Z) significance 1.8 $m = 1.3$ TeV, Chargino 1.6는 $m = 400$ GeV, Stau 1.4^{\square} $10⁶$ GeV $1.2E$ 1200 *ATLAS* \sqrt{s} = 13 TeV, 139 fb⁻¹ $10⁵$ 1000F 0.8 p_{-}^{trk} > 120 GeV, $|\eta|$ < 1.8 **SR-Inclusive High** 800 0.6ε $10⁴$ \rightarrow m(\tilde{g}) = 2.2 TeV, m($\tilde{\chi}^0$) = 100 GeV, τ(\tilde{g}) = 10 ns 04 \bullet Observed 600 $-\mathbf{r} \cdot m(\widetilde{\chi}_1^{\pm}) = 1.3 \text{ TeV}, \tau(\widetilde{\chi}_1^{\pm}) = 10 \text{ ns}$ $-\frac{1}{r}$ - m(τ̃) = 400 GeV, τ(τ̄) = 10 ns 400 Expected 10^{2} 2 2.5 $\overline{3.5}$ 1.5 3 200^F

n(ĝ) [GeV

[ATLAS arXiv:2303.13613](https://arxiv.org/abs/2303.13613)

Long-Lived Multi-Charged Particles

- Multi-charged particles (MCP): techno-baryons from TC, doubly charged Higgs from left-right symmetric model or from supersymmetric left-right model.
	- $Q = ze$, $1 < |z| < 8$, 500 $<$ mass $<$ 2000 GeV, μ -like signatures
	- Higher mass and higher charge (high dE/dx in several subsystems) requires using additionally "late- μ " and MET trigger to catch signal ending between bunch crossings.

 $S(dE/dx) = \frac{dE/dx - \langle dE/dx \rangle_{\mu}}{\sigma (dE/dx)_{\mu}}$

Some candidate events from dE/dx search were not selected by this search due to low ionisation loss in tracker and moun chambers.

Search with 3L + MET

- SUSY chargino-neutralino pair-production
- Simplified SUSY models with WZ and Wh mediated productions with final state of 3ℓ + missing transverse momentum
- Considering different signal scenarios depending on mass spectra
- Several aspects of the analysis are improved: selection, particle reconstruction, lepton id/isolation, as well as using MVA techniques
- On-shell WZ, off-shell WZ, on-shell Wh are optimised separately taking into account lepton flavour, (in-)consistency with Z boson mass, etc..

 3.5

[ATLAS arXiv:2106.01676](https://arxiv.org/abs/2106.01676)

NN score

Keti Kc

NN score

So far, collected only about 5% of data — x20 more data to come! And before all those, Run 3 has 'just' started!

More data:

- Explore processes with smaller cross-sections
- Explore unusual signatures, smaller couplings
- Improve precision of the SM measurements and modelling

Major Detector Upgrades

All-silicon tracking detector 5 pixel+4 strip layers to $|\eta|$ <4

Calorimeters New readout electronics compatible with L0 1 MHz rate **High granularity timing**

ATLAS Trigger and DAQ

- L0 (Calo+ μ): 1 MHz
- L1 (Calo+ μ +Itk): 400 kHz

• HLT: 10 kHz

Muon systems - New DT/CSC BE/FE electronics GEM/RPC coverage in 1.5<|n|<2.4 - Muon-tagging in $2.4|\eta| < 3.0$ -

MIP Timing Detector

Muon systems

- New readout and trigger • electronics
- Additional chambers for inner •

CMS Trigger & DAQ

- Track-trigger @L1
- $L1$ rate \sim 750kHz
- HLT output ~7.5kHz

TRACKER

- radiation tolerant, high granularity, low material budget
- coverage up to $|\eta|$ =3.8

•

•

- track trigger at l1

Barrel calorimeters

- **New BE/FE electronics** -
- **ECAL: lower temperature**
- HCAL: partially new scintillator - Endcap calorimeters
- high granularity calorimeter -
- **Radiation tolerant scintillator**

Supersymmetry

Leptoquarks

- LQ could be searched in different final states
- Most of the current constraints assume $Br(LQ \rightarrow \ell q) = 100\%$. Large dataset will enable probing smaller Br.

CMS FTR 18-008

Heavy Resonances

• Continue looking for a heavy resonance using powerful search techniques

Non-prompt Searches

[CMS-PAS-EXO-14-007](https://cds.cern.ch/record/2206863/files/EXO-14-007-pas.pdf)

- Large dataset is essential for LLPs given their very small cross section
- dE/dx is a powerful handle in these searches
- Search for dark photons

Summary

- The LHC has been a tremendous success and the ATLAS and CMS detectors have performed remarkably well
- Discovery of the Higgs boson and detailed study of its properties
- Measurement of the SM processes at the highest possible precision
- Observation of rare processes
- Yet, no discovery of the physics beyond the standard model
- But… The Run 2 data have shown a few excesses. Some of those even line up interestingly..
- And... The Run 3 is already ongoing. All those 'hints' will be checked with Run 3 (and combined) datasets
- High-Luminosity LHC is around the corner— will enable significantly extend probes for BSM using larger dataset and more sophisticated methods. Stay tuned!

BACKUP

LQ Searches

