

Beyond the SM searches: current status from the experiment side

> Keti Kaadze (Kansas State University) on behalf of the ATLAS and CMS Collaborations

CORFU2023 Workshop on Future Accelerators April 25, 2023

Introduction

- The Large Hadron Collider is extremely powerful instrument to study fundamental processes at the energy frontier
- Improve precision of the SM processes
- Have an access to rare processes
- Discover new processes for the first time
- Very successful Run I and 2 at the LHC
 - $\sqrt{s} = 8 \text{ TeV}$, Lumi = ~20/fb
 - $\sqrt{s} = 13$ TeV, Lumi = ~140/fb

Multipurpose detectors with

- Central tracking
- Calorimeter
- Muon detectors

Excellent performance even in high pileup environment with over 90% data-taking efficiency.

Standard Model Production Cross Section Measurements

Status: February 2022

What the Higgs does not tell us? at least, so far...

• Why Higgs mass is what it is?

Higgs mass has calculable quantum corrections from highest mass scale in theory

- Are there other low/high mass Higgs particles?
- Why there are three generations of fermions?
- Can EM, weak, strong (& gravity) be unified?
- What happened to antimatter?

If the universe began from pure energy, we should have equal amounts of matter and antimatter. But we see no naturally occurring anti-matter.

5

And, also Dark Matter...

With the Higgs discovery we have 'just' understood ~5% of our universe

Many Theories

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: March 20

ion $\int (dt - (328 - 139) fb^{-1})$

ATLAS Preliminary $\sqrt{5} = 13$ TeV

011								J2 al = (32.0 - 139) 10	$\gamma s = 13 \text{ lev}$
	Model	Signature	∫£ dt [fl	p ⁻¹]	Lifetin	ne limit				Reference
	RPV $\tilde{t} \rightarrow \mu q$	displaced vtx + muon	136	ĩ lifetime			0.00	3-6.0 m	m(īt)= 1.4 TeV	2003.11956
SUSY	$\operatorname{RPV} \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu \mu v$	displaced lepton pair	32.8	${\widetilde \chi}_1^0$ lifetime			0.003-1.0 m		$m({ ilde q}){=}$ 1.6 TeV, $m({ ilde \chi}_1^0){=}$ 1.3 TeV	1907.10037
	$\operatorname{RPV} \tilde{\chi}_1^0 \rightarrow qqq$	displaced vtx + jets	139	$ ilde{\chi}_1^0$ lifetime			0.0	0135-9.0 m	$m(ilde{\chi}_1^0) =$ 1.0 TeV	2301.13866
	$\operatorname{GGM}_{\widetilde{\chi}_1^0} \to Z\widetilde{G}$	displaced dimuon	32.9	$ ilde{\chi}_1^0$ lifetime				0.029-18.0 m	$m(ilde{g}){=}$ 1.1 TeV, $m(ilde{\chi}_1^0){=}$ 1.0 TeV	1808.03057
	GMSB	non-pointing or delayed	γ 139	${ ilde \chi}_1^0$ lifetime			0.24-2.4 m		$m(\tilde{\chi}_1^0, \tilde{G})$ = 60, 20 GeV, \mathcal{B}_H = 2%	2209.01029
	GMSB $\tilde{\ell} \rightarrow \ell \tilde{G}$	displaced lepton	139	$\tilde{\ell}$ lifetime			6-750 mm		$m(\tilde{\ell}) = 600 \text{ GeV}$	2011.07812
	GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$	displaced lepton	139	τ̃ lifetime			9-270 mm		$m(\tilde{\ell})=200~{ m GeV}$	2011.07812
	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{+} \tilde{\chi}_1^{-}$	disappearing track	136	${\widetilde{\chi}}_1^{\pm}$ lifetime			0.06-3.06 (n	$m(ilde{\chi}_1^{\pm})=$ 650 GeV	2201.02472
	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^-$	arge pixel dE/dx	139	$\tilde{\chi}_1^{\pm}$ lifetime			0.3-30.0 m		$m(\tilde{\chi}_1^{\pm}) = 600 \text{ GeV}$	2205.06013
	Stealth SUSY	2 MS vertices	36.1	S lifetime			0.1-519 m		$\mathcal{B}(\tilde{g} \rightarrow \tilde{S}g) = 0.1, \ m(\tilde{g}) = 500 \ \text{GeV}$	1811.07370
	Split SUSY	large pixel dE/dx	139	ĝ lifetime			> 0.45 m		$m(ilde{g})=$ 1.8 TeV, $m(ilde{\chi}_1^0)=$ 100 GeV	2205.06013
	Split SUSY	displaced vtx + E_{T}^{miss}	32.8	ĝ lifetime				0.03-13.2 m	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	1710.04901
	Split SUSY	0 ℓ , 2 – 6 jets + E_T^{miss}	36.1	ĝ lifetime			0.0-2.1 m		$m({ ilde g}){=}$ 1.8 TeV, $m({ ilde \chi}_1^0){=}$ 100 GeV	ATLAS-CONF-2018-00
10%	$H \rightarrow s s$	2 MS vertices	139	s lifetime		_	0.31-72.4 m	_	m(s)= 35 GeV	2203.00587
	$H \rightarrow s s$	2 low-EMF trackless jet	s 139	s lifetime			0.1	9-6.94 m	m(s)= 35 GeV	2203.01009
	VH with $H \rightarrow ss \rightarrow bbb$	b 2l + 2 displ. vertices	139	s lifetime		4-85 r	nm		m(s)= 35 GeV	2107.06092
Н =	FRVZ $H \rightarrow 2\gamma_d + X$	2 µ-jets	139	γ _d lifetime			0.654-939 mm		$m(\gamma_d) = 400 \text{ MeV}$	2206.12181
igs E	FRVZ $H \rightarrow 4\gamma_d + X$	2 µ-jets	139	γ_d lifetime			2.7-534 mm		$m(\gamma_d) = 400 \text{ MeV}$	2206.12181
Hig	$H \rightarrow Z_d Z_d$	displaced dimuon	32.9	Z _d lifetime		0.009-24.0 m			$m(Z_d) = 40 \text{ GeV}$	1808.03057
	$H \rightarrow ZZ_d$	2 e, µ + low-EMF trackless	s jet 36.1	Z _d lifetime			0.21	-5.2 m	$m(Z_d) = 10 \text{ GeV}$	1811.02542
_	$\Phi(\text{200 GeV}) \rightarrow \textit{ss}$	low-EMF trk-less jets, MS	vtx 36.1	s lifetime			0.41-51.5 m		$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 50 \text{ GeV}$	1902.03094
cala	$\Phi(\text{600 GeV}) \rightarrow \textit{ss}$	low-EMF trk-less jets, MS	vtx 36.1	s lifetime			0.04-21.5 m		$\sigma \times \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
Sc	$\Phi(1 \text{ TeV}) \to ss$	low-EMF trk-less jets, MS	vtx 36.1	s lifetime			0.06-52.4 m	-	$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 150 \text{ GeV}$	1902.03094
HNL	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx (µµ,µe, ee)	+ <i>µ</i> 139	N lifetime		0.74-42 mm			m(N)= 6 GeV, Dirac	2204.11988
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx (µµ,µe, ee)	+ <i>µ</i> 139	N lifetime		3.1-33 mm			m(N)= 6 GeV, Majorana	2204.11988
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx (µµ,µe, ee)	+e 139	N lifetin <mark>ne</mark>		0.49-81 m	ım		m(N) = 6 GeV, Dirac	2204.11988
	$W \to N\ell, N \to \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee)	+e 139	N life <mark>time</mark>	1	0.39-51 mm			m(N)= 6 GeV, Majorana	2204.11988
	۱	√s = 13 TeV √s = 1	3 TeV		0.001 0	0.01	0.1 1	10	¹⁰⁰ cτ [m]	•
partial data full data										
*On	ly a selection of the a	vailable lifetime limits	s is showi	י. 0.001	0.01	0.1	1	10	τ [ns]	

What we are going after?

Looking for Unknown

M_x

Mass

Limited by CME

Limited by data

Limited by detector acc.

Focus

- I aim to present some of the latest results from ATLAS and CMS experiment focusing on
 - New methods and tools
- Searches over broad mass and coupling range
- Searches for long-lived particles
- Searches to explain flavour anomalies
- All these are collected with a theme of "interesting and exciting hints"...
- Complete sets of BSM results can be found at
 - ATLAS
 <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults</u>
 <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>
 <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults</u>
 - CMS
 <u>https://twiki.cern.ch/twiki/bin/view/CMS/B2G</u>
 <u>https://twiki.cern.ch/twiki/bin/view/CMS/SUS</u>
 <u>https://twiki.cern.ch/twiki/bin/view/CMS/EXOTICA</u>

Data Scouting

 Huge amount of data from the LHC. Trigger selection is gives priority to high pT objects

Used for both searches for hadronic and multi-muon final states

1KHz

1 MB/ev

100 KH2

Huge reduction in rate. We might be losing good events

CMS PRL 124.131802

Heavy SM-like W' resonance

number of b jets jet_{top} is a b-tagged jet $jet_{W'}$ is a b-tagged jet

no

- Decaying preferentially to the third generation particles
- Considering mass range 2 6 GeV, different width and chirality.
- Constraining neutrino p_T by m_W ; deciding a jet to be from top according to three body mass to be consistent to m_t, smallest ΔR between lepton and jet, picking lower pT jet.

no

Largest excess around 3.8 TeV for 1% width and RH scenario

type of category (label)

Control region (R0)

0

to Unity

Normalized

102

10

 10^{-2}

10

10

10^{-t}

10-6

10

 $Y \rightarrow XH (m_v = 2000 \text{ GeV}, m_v = 300 \text{ GeV})$

- Y→XH (m = 3400 GeV, m = 110 GeV)

Y→XH (m = 5000 GeV, m = 2500 GeV)

-0.8 -0.6 -0.4 -0.2 0

• Looking for very high mass resonance $Y \rightarrow XH \rightarrow qqbb$

- 2HDM, Extra Dimensions, Heavy Vector Triplets
- X and H could be boosted for specific Y(1.5 6 TeV) and X(65 - 3000 GeV) masses; Considering both resolved and boosted topologies
- Novel jet-level implementation anomaly detection based on unsupervised ML training is used to select boosted X particles incompatible with the SM background.

0.2 0.4

ATLAS Preliminary

√s = 13 TeV, 139 fb⁻

0.6

J_v Anomaly Score

0.8

Z'(W')

High Mass Searches

- Heavy Vector Triplet (HVT), Spin-I W' and Z', Spin-0 Radion
- Boosted topologies are used
- Two aK8 jets with or w/o two aK4 jets
- 3D observables: M₁(aK8):M₂(aK8):M₃(aK8₁,aK8₂)
- Events categorised based on ML analysing substructure of large-radius jets from W, Z, and H

Keti Kaadze, Kansas State University

High Mass Searches

- EW Singlet, 2HDM, MSSM predict di-H resonances
- Combining resonant Higgs pair-production searches.
 - $bb\gamma\gamma$ final observable $m_{\gamma\gamma}$. Sensitive at low mass region. Search region: 251 - 1000 GeV.
 - $bb\tau\tau$ ($\ell\tau_h$ and $\tau_h\tau_h$ signatures) final observable MVA. Sensitive at intermediate mass region. Search region: 251 - 1600 GeV.
 - bbbb final observable mHH. Sensitive at high mass region. Considering both 300 200 resolved (search region 251-1500 GeV) and boosted (search region 900-3000 GeV) topologies.

1000

2000

3000

m_X [GeV]

, HH) [fb

100

bbτ+τbbγγ

Combined

500

- Motivated from ED, NMSSM, Two-Real-Scalar-Singlet extension of SM (TRSM): X→HH (bulk-R) or HY(NMSSM)
- Focusing on kinematic region where: m_Y < m_x m_H;
 ~300 < m_X < I TeV, 90 < m_Y < 800 GeV
- Using ML techniques to discriminate against major ttH and other non-peaking backgrounds
 Deviation from the bkg at

- High mass scalar $H \rightarrow WW$ decaying leptonically
- Using DNN for classification between signals and bkgs
- Using m_T from DNN as final observable
- Interpretations: SM-like couplings/decays, 2HDM/MSSM
- Different width scenarios (0.1-10%); Interference with WW continuum and the SM H→WW is taken into account
- f_{VBF} is used as free parameter

Mild excess in the mass range 400 - 1200 GeV for all f_{VBF} scenarios

17

Scenario	Mass [GeV]	ggF cross sec. [pb]	VBF cross sec. [pb]	Local signi. $[\sigma]$	Global signi. $[\sigma]$
$SM f_{VBF}$	800	0.16	0.057	3.2	1.7 ± 0.2
$f_{VBF} = 1$	650	0.0	0.16	3.8	2.6 ± 0.2
$f_{VBF} = 0$	950	0.19	0.0	2.6	0.4 ± 0.6
floating f_{VBF}	650	2.9×10^{-6}	0.16	3.8	2.4 ± 0.2

CMS-PAS-HIG-20-016

Lepton Flavour Anomalies

- Longstanding hint (~3 σ) of a deviation
 in lepton flavour universality test
- LFU not sufficiently tested in heavy quark decays

- The ratio is sensitive to charged Higgs or LQ

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^- \bar{\nu}_{\mu})}$$

- Deviation wrt. the SM is at 3.2 σ ;
- Perfect agreement between LHCb measurements

- fermions motivates searches in fine states with τ , b-jets, top-quark decays..
- Combined search for pair, single, non-resonant production

Keti Kaadze, Kansas State University

Di- τ search over wide mass range

- Search in di-τ mass spectrum is motivated from additional Higgs in context of MSSM, non-resonant VLQ production
 - Interference with the SM $\tau\tau$ continuum taken into account

THE MUNICIPAL OF THE STATE OF T

Vector-Like Leptons

 γ/Z

Motivated from flavour anomalies

- VLL decay via vector leptoquarks, which couple dominantly to the third generation
- Categorise by number of b-jets and τ -leptons
- Using DNN to discriminate against QCD and tt backgrounds

Vector-Like Quarks

CMS arXiv:2201.02227

- VLQ could solve hierarchy problem
 - Searching in 0.6-1.8 TeV mass range; multiple width scenarios
 - Depending on T mass considering resolved and merged topologies

Why Long-Lived Particles Searches?

- We already have some long-lived particles around us.
 Could there be more of those perfectly motivated
 - Small couplings
 - Suppressed decay phase space
- So far no evidence for new physics. Experiment perfectly agrees with the Standard Model.
 We need to look in all possible directions.

How to Find LLPs?

- Signatures define search strategy
- Could be light or heavy
- Could travel fast or slow
- Could decay to quarks, gluons, or leptons, or even invisible particles (missing transverse momentum)
- Main handles: timing, displacement, and ionisation

• Every sub-system important

distance travelled = $\beta \gamma \times c \tau$

Keti Kaadze, Kansas State University

26

ATLAS arXiv:2205.06013

 $pp \rightarrow \tilde{g} \tilde{g} (R-hadron)$ $\Delta m(\tilde{g}, \tilde{\chi}_{\star}^{0}) = 30 \text{ GeV}$

Observed

----- Expected $\pm 1 \sigma_{exp}$

Observed $\pm 1 \sigma_{th}$

n(ĝ) [GeV

2200 2000 1800

1600

1400

1200 1000

Long-Lived Particle Searches

 LLPs arise in models of SUSY with compressed spectra or weakly coupled RPV, Hidden Valley, DM, QCD Axions,...

ATLAS arXiv:2303.13613

Long-Lived Multi-Charged Particles

- Multi-charged particles (MCP): techno-baryons from TC, doubly charged Higgs from left-right symmetric model or from supersymmetric left-right model.
- Q=ze, | < |z| < 8, 500 < mass < 2000 GeV, μ -like signatures
- Higher mass and higher charge (high dE/dx in several subsystems) requires using additionally "late-µ" and MET trigger to catch signal ending between bunch crossings.

 $S(dE/dx) = \frac{dE/dx - \langle dE/dx \rangle_{\mu}}{\sigma(dE/dx)_{\mu}}$

Some candidate events from dE/dx search were not selected by this search due to low ionisation loss in tracker and moun chambers.

Keti Kaadze, Kansas State University

Search with 3L + MET

- SUSY chargino-neutralino pair-production
- Simplified SUSY models with WZ and Wh mediated productions with final state of 3ℓ + missing transverse momentum
- Considering different signal scenarios depending on mass spectra
- Several aspects of the analysis are improved: selection, particle reconstruction, lepton id/isolation, as well as using MVA techniques
- On-shell WZ, off-shell WZ, on-shell Wh are optimised separately taking into account lepton flavour, (in-)consistency with Z boson mass, etc..

3.5

ATLAS arXiv:2106.01676

NN score

NN score

So far, collected only about 5% of data — x20 more data to come! And before all those, Run 3 has 'just' started!

More data:

- Explore processes with smaller cross-sections
- Explore unusual signatures, smaller couplings
- Improve precision of the SM measurements and modelling

Major Detector Upgrades

All-silicon tracking detector 5 pixel+4 strip layers to $|\eta|$ <4

Calorimeters
New readout electronics compatible with L0 1 MHz rate
High granularity timing

ATLAS Trigger and DAQ

- L0 (Calo+μ): 1 MHz
- L1 (Calo+μ+ltk): 400 kHz
- HLT: 10 kHz

Muon systems
New DT/CSC BE/FE electronics
GEM/RPC coverage in 1.5<|η|<2.4
Muon-tagging in 2.4|η|<3.0

MIP Timing Detector

Muon systems

- New readout and trigger
 electronics
- Additional chambers for inner

CMS Trigger & DAQ

- Track-trigger @L1
- L1 rate ~750kHz
- HLT output ~7.5kHz

TRACKER

- radiation tolerant, high granularity, low material budget
- coverage up to $|\eta|=3.8$
- track trigger at l1

Barrel calorimeters

- New BE/FE electronics
- ECAL: lower temperature
- HCAL: partially new scintillator Endcap calorimeters
- high granularity calorimeter
- Radiation tolerant scintillator

Supersymmetry

Keti Kaadze, Kansas State University

Leptoquarks

- LQ could be searched in different final states
- Most of the current constraints assume Br(LQ→ℓq) = 100%. Large dataset will enable probing smaller Br.

CMS FTR 18-008

Heavy Resonances

 Continue looking for a heavy resonance using powerful search techniques

Selection	Resonance Resolved	Resonance Merged			
	1 isolated "tight" lepton				
$W \to \ell \nu$	0 additional "loose" leptons				
	$E_{\rm T}^{\rm miss} > 60 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 100 { m ~GeV}$			
	$p_{\rm T}(\ell\nu) > 75 { m ~GeV}$	$p_{\rm T}(\ell\nu) > 200 { m ~GeV}$			
	$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}(e\nu) > 0.2$				
	2 small-R jets	large-R jet			
$V \rightarrow ii$	min m(jj) - m(W/Z)	highest p_T			
$V \rightarrow JJ$	$p_{\rm T}(j_1) > 60 { m ~GeV}, p_{\rm T}(j_2) > 40 { m ~GeV}$	$p_{\rm T}(J) > 200 \text{ GeV}, \eta(J) < 2$			
	$66 < m(jj) < 94 \mathrm{GeV}$	m(J) - m(W/Z) < 50 GeV			
	or $82 < m(jj) < 106 \text{ GeV}$	Scale by W/Z -tagger efficiency			
	Non-b-tagged				
Tagged jets (VBF Category)	$\eta(j_1^{\text{tag}}) \cdot \eta(j_2^{\text{tag}}) < 0$, highest $m(jj)$				
	$p_{\rm T}(j_{1,2}^{\rm tag}) > 30 {\rm ~GeV}, m(jj) > 770 {\rm ~GeV}, \Delta \eta(j,j) > 4.7$				
	$p_{\rm T}(\ell\nu)/m(\ell\nu jj) > 0.35 \ (0.3 \ {\rm for} \ {\rm VBF})$	$p_{\rm T}(\ell\nu)/m(\ell\nu J) > 0.4 \ (0.3 \ {\rm for \ VBF})$			
Topology	$p_{\rm T}(jj)/m(\ell\nu jj) > 0.35 \ (0.3 \text{ for VBF})$	$p_{\rm T}(J)/m(\ell\nu J) > 0.4 \ (0.3 \ {\rm for} \ {\rm VBF})$			
	$\Delta \phi(j,\ell) > 1, \Delta \phi(j, E_{\rm T}^{\rm miss}) > 1$				
	$\Delta \phi(j,j) < 1, \Delta \phi(\ell, E_{\rm T}^{\rm miss}) < 1$				
b-veto	No b -tagged jets in the event b	peside 1 (2) from $W(Z) \to jj$			

Non-prompt Searches

CMS-PAS-EXO-14-007

- Large dataset is essential for LLPs given their very small cross section
- dE/dx is a powerful handle in these searches
- Search for dark photons

Summary

- The LHC has been a tremendous success and the ATLAS and CMS detectors have performed remarkably well
- Discovery of the Higgs boson and detailed study of its properties
- Measurement of the SM processes at the highest possible precision
- Observation of rare processes
- Yet, no discovery of the physics beyond the standard model
- But... The Run 2 data have shown a few excesses. Some of those even line up interestingly..
- And... The Run 3 is already ongoing. All those 'hints' will be checked with Run 3 (and combined) datasets
- High-Luminosity LHC is around the corner— will enable significantly extend probes for BSM using larger dataset and more sophisticated methods. Stay tuned!

BACKUP

LQ Searches

