

Istituto Nazionale di Fisica Nucleare

Corfu Summer Institute on Future Accelerators – Corfu, 27th April 2023

Outline

- Introduction to flavour physics
- Current experimental status of main topics in flavour physics
 - For each topic a selection of relevant and recent results
- A look to the future
- Conclusions

What is flavour physics

L'enciclopedia libera

\equiv Flavour (particle physics)

Article Talk

In particle physics, **flavour** or **flavor** refers to the *species* of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with *flavour quantum numbers* that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations.

- Flavour physics is tightly connected with some of the most fundamental questions in particle physics
 - Why are there 3 families of fermions?
 - Where does the hierarchy of fermion masses comes from?
 - Why do we live in a matter-dominated universe?

Flavour in particle physics

Flavour quantum numbers

- Isospin: I or I_3
- Charm: C
- Strangeness: S
- Topness: T
- Bottomness: B'

Related quantum numbers

- Baryon number: B
- Lepton number: L
- \bullet Weak isospin: T or \mathcal{T}_3
- Electric charge: Q
- X-charge: X

Combinations

• Hypercharge: Y

•
$$Y = (B + S + C + B' + 7)$$

- $Y = 2 (Q I_3)$
- Weak hypercharge: Y_W

```
• Y_W = 2 (Q - T_3)
• X + 2Y_W = 5 (B - L)
```


A story full of successes

1**950'**s **Discovery of parity violation** 1960's **CP violation in K decays 1970's** Discovery of J/ ψ and charm quark Inference on top quark mass 1**980'**s from **B** mixing 2**000**'s **CP violation in B decays** 2**010'**s Penta- and tetra-quarks 2**020'**s **CP violation in D decays**

Cartoon presented by N. Cabibbo at the Berkeley conference in 1966

The CKM matrix

- The CKM matrix accommodates the mixing between mass and flavour eigenstates of quarks that arises from the electroweak symmetry breaking (Higgs mechanism)
- Encodes the strength of quark flavour-changing transitions
- Governs the breaking of CP symmetry in the SM

The CKM matrix

- - The CKM matrix accommodates the mixing between mass and flavour eigenstates of quarks that arises from the electroweak symmetry breaking (Higgs mechanism)
 - Encodes the strength of quark flavour-changing transitions
 - Governs the breaking of CP symmetry in the SM

(I will not touch the PMNS matrix)

Many tools for discovery

- Flavour physics provide a wide range of Standard Model tests
 - CKM metrology and constraining the UT apex
 - Spectroscopy
 - Search for rare and forbidden decays
 - Test of lepton-flavour universality and conservation
- By comparing precise measurements with theoretical predictions the nature of new physics can be inferred
 - Complementary to direct searches of new particles
 - Not limited by the energy of collisions
 - Requires inputs from theory

Main characters (I)

- Very large production cross-section of all heavy-flavoured hadrons (including baryons and B_c^+)
- Harsh environment

Main characters (II)

- Asymmetric e⁺-e⁻ colliders
- Much cleaner environment
- Quantum-entangled final-state particles

Main characters (III)

- Beam-dump experiments
- Dedicated to kaon physics
- Potentially able to search for light BSM particles

NA62

CKM metrology

- One of the most powerful tools to test the Standard Model
- The CKM matrix has only 4 parameters
 - The Unitary Triangle is highly overconstrained from many measurements
 - Unique consistency check

Ц

- Very clean quantity to test the SM
 - Theoretical uncertainty on the interpretation of γ measurements is ~10⁻⁷ [Zupan & Brod 1308.5663]
- Current experimental uncertainty is < 4°
 - Given the extreme precision also CPV and mixing effects in charm decays must be taken into account
 - Knowledge of hadronic D decay parameters fundamental to improve sensitivity to γ

LHCb

[%] A 1.5

0.5

0ò

Latest LHCb combination includes latest

- $B^{\pm} \rightarrow Dh^{\pm} \text{ analyses}_{\underline{[arXiv:2112.10617, arXiv2209.03692]}}$
- Direct and indirect CPV in charm [PRD105(2022)092013, arXiv:2208.06512, arXiv:2209.03179]
- Compatible with indirect determinations
 - $-\gamma = (65.7^{+0.9}_{-2.7})^{\circ}$ CKMFitter $-\gamma = (65.8 \pm 2.2)^{\circ}$ UTFit
- LHCb largely dominates the WA

$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$

Frequentist approach 173 observables 52 parameters

0.5

LHCb-CONF-2022-003 LHCb $D^{\circ} \rightarrow K^{2} \pi^{\overline{\tau}}$ LHCb D°

0.056

0.058

0.06

0.062

150

1.5

LHCb Preliminary October 2022

0.064

Phase-space integrated Latest γ -related measurement from LHCb $D \rightarrow 2K2\pi^{-1}$ MeV/c $D \rightarrow 4\pi$ $R^{\pm} \rightarrow DK$ with $B^{\pm} \rightarrow [2K2\pi]_D h^{\pm}$ 9 fb' 9 fb $\rightarrow K \pi \pi \pi [\pi^{0}]$ $^{0} \rightarrow D^{*}(\rightarrow D [\pi^{*}]) h$ $B^1 \rightarrow D^{\bullet} (\rightarrow D [\pi^{\bullet}]) h$ $B^{\pm} \rightarrow D^{\bullet} (\rightarrow D [\pi^{0}]) h$ $B^{\pm} \rightarrow D^{\dagger} (\rightarrow D [\gamma])$ $\rightarrow D(\rightarrow D[\gamma]) I$ $B \rightarrow D^{\circ}h^{*}[\pi]$ and $B^{\pm} \rightarrow [4\pi]h^{\pm}$ $B^0_{,} \rightarrow D^0 K^{\pm}[\pi^{\pm}]$ $B^0_{,} \rightarrow D^0 K^{\pm}[\pi^{\mp}]$ Integrated over the phase space of the 5400 5600 m(DK⁻) [MeV/c²] $m(DK^+)$ [MeV/c²] $m(DK^+)$ [MeV/c²] $m(DK^{-})$ [MeV/c²] 4-body D decay LHCb LHCb 2 2500 8000 $\longrightarrow D \rightarrow K \pi \pi \pi [\pi^{0}]$ $B^0 \rightarrow D^{\bullet} (\rightarrow D [\pi^{\dagger}]) h$ 7000 7000 $B^0 \rightarrow D (\rightarrow D [\pi^*])$ $B^{\pm} \rightarrow D^{\bullet} (\rightarrow D [\pi^{\circ}]) h$ $B^{\pm} \rightarrow D^{\bullet} (\rightarrow D [\pi^{\pm}]) h^{\dagger}$ R 2000 සි 6000 $B^{\pm} \rightarrow D^{\dagger} (\rightarrow D [\gamma]) h^{\pm}$ දි දි 6000 Also binned in D phase space for the **සි** 2000 $B^{\pm} \rightarrow D^{*}(\rightarrow D [\gamma]) h^{\pm}$ $B \rightarrow D^0 h^x[\pi]$ $B \rightarrow D^{0}h^{1}[\pi]$ - Combinatori - Combinatoria - Total Total - Date $D \rightarrow 4K2\pi$ mode 2000 5600 m(Dπ⁻) [MeV/c²] 5400 5600 5600 Hadronic D decay parameters from LHCb _ $m(D\pi^+)$ [MeV/c²] $m(D\pi^{-})$ [MeV/c²] $m(D\pi^+)$ [MeV/c²] amplitude analysis JHEP02(2019)126 arXiv2301.10328 0 ^M_Q 150 $\gamma = (116^{+12}_{-14})^{\circ}$ LHCb⁻ Asymmetry LHCb 9 fb⁻¹ 0.2 9 fb⁻¹ 100 **Great improvement** -0.2PS integrated expected from better 50 Binned -0.4projection LHCb 2021 knowledge of D hadronic No CPV prediction -0.6 $B^{\pm} \rightarrow DK^{\pm}$ $0^{\scriptscriptstyle L}_0$ parameters 50 100 150 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 7 6 γ [°] 13 Bin number

- Team effort will be required to measure γ to the ultimate precision
 - Fundamental to exploit the full BESIII sample of $\psi(3770)$ (20 fb⁻¹)
 - Sensitivity to γ from $B^{\pm} \rightarrow \left[K_S^0 \pi^+ \pi^-\right]_D h^{\pm}$ will be limited to $\sim 1^\circ$ by current BESIII measurements of hadronic D parameters (~3 fb⁻¹)
 - Sensitivity to γ from $B^{\pm} \rightarrow [4h]_D h^{\pm}$ modes can rival that of the $[K_S^0 h^+ h^-]_D$ thanks to inputs for hadronic D parametrs [arXiv:2103.05988]

- Belle II is joining the effort
 - First γ determinations from joint Belle and Belle II samples are coming
- New measurements from other $B^{\pm} \rightarrow Dh^{\pm}$ modes are coming as well
 - Not yet competitive, but sensitivity greatly improved over Belle

V_{ub} and V_{cb}

- Important tree-level constraint of the UT apex
 - Currently limiting factor in the global constraining power
- Determined from decay rates of semileptonic decays
 - Plus fundamental contribution from lattice QCD

$$d\Gamma \propto G_F^2 |V_{qb}|^2 |L_{\mu} \langle X | \overline{q} \gamma_{\mu} P_L b | B \rangle|^2$$

Experiment

- Belle II will have the leading role thanks to energy-constraint and hermetic detector
- Long standing discrepancy between exclusive and inclusive determinations
- More precise measurements must be matched with corresponding theory/lattice improvements

q

V_{cb} from $B \rightarrow D^* l \nu_l$

- Neutrino reconstructed inclusively thanks to energy-constrained environment
- Yields determined in bins of q² and pol. angles to properly determine form factors

 $|V_{cb}|_{CLN} = (40.4 \pm 0.3_{stat} \pm 1.0_{syst.} \pm 0.6_{theo.}) \times 10^{-3}$

New at MoriondEW

WA values [HFLAV 2021] $|V_{cb}|_{\text{excl}} = (39.10 \pm 0.50) \times 10^{-3}$ $|V_{ub}|_{\text{excl}} = (4.19 \pm 0.17) \times 10^{-3}$

V_{ub} and V_{cb}

Exclusive V_{xb} from Belle II with only 189 fb⁻¹ using latest LQCD inputs

	V _{cb} x 10 ³	Reference
Belle II $B^0 \rightarrow D^{*-}l^+\nu_l$ untagged	40.9 ± 1.2 (BGL)	To be submitted to PRD
Belle II $B^0 \rightarrow D^{*-}l^+\nu_l$ tagged	37.9 ± 2.7 (CLN)	[arXiv.2301.04716]
Belle II $B^0 \rightarrow D l \nu_l$ untagged	38.28 ± 1.16 (BGL)	[arXiv:2210.13143]

	V _{ub} x 10 ³	Reference		
Belle II $B^0 \rightarrow \pi e \nu_e$ tagged	3.88 ± 0.45	[arXiv:2206.08102]		
Belle II $B^0 \rightarrow \pi e \nu_e$ untagged	3.55 ± 0.25	[arXiv.2210.04224]		

Also LHCb in the game with ${\rm B}_{\rm s}$ and $\Lambda_{\rm b}$ modes

	V _{cb} x 10 ³	Reference
LHCb $B^0_s o D^{(*)}_s \mu u_\mu$	$41.4 \pm 0.6 \pm 0.9 \pm 1.2$ (BGL)	PRD101(2020)072004
LHCb $B_s^0 o D_s^{(*)} \mu \nu_\mu$	$42.3 \pm 0.8 \pm 0.9 \pm 1.2$ (CLN)	PRD101(2020)072004

From the LHCb measurement of $|V_{ub}|/|V_{cb}|$ and using WA of exlusive $|V_{cb}| = (39.5 \pm 0.9) \times 10^{-3}$

	V _{ub} x 10 ³	Reference
LHCb $B_s^0 \to K^- \mu^+ \nu_\mu$	$2.40 \pm 0.16 \text{ (q}^2 < 7 \text{ GeV}^2/\text{c}^4)$	PRL126(2021)081804
LHCb $B_s^0 \to K^- \mu^+ \nu_\mu$	3.74 ± 0.32 (q ² >7 GeV ² /c ⁴)	PRL126(2021)081804
LHCb $\Lambda_b^0 o p \mu^+ \nu_\mu$	3.27 ± 0.23	NaturePhysics11(2015)743

- Time-dependent CPV allows constraints to the UT apex to be derived from B^0 (sin2 β) and B_s^0 (ϕ_s) mixing phases
 - Measure CP phase in the interference between B-mixing and decay
 - Golden modes are $B_s^0 \rightarrow J/\psi h^+ h'^-$ and $B^0 \rightarrow J/\psi K_s^0$ as decay dominated by tree-level $b \rightarrow c \bar{c} q$ transitions (No CPV in decay)
- Fundamental to identify the flavour of the B at the production → flavour tagging
 - $-\sigma^{-2} \propto \varepsilon_{eff}$ effective tagging power
 - $\varepsilon_{eff}^{LHC} \approx 5 8\%$, $\varepsilon_{eff}^{BelleII} \approx 30\%$ Belle II profits from the much cleaner environment

- Measurement of sin2 β is already very precise, but
 - LHCb still has x3 more statistics to add from Run2 alone and is working hard to update the measurement
 - Belle II is already investigating its potential <u>arXiv:2302.12898</u>

B_s^0 mixing phase

- In the SM the B_s^0 mixing phase is very small and very precisely determined from UT constraints $-\phi_s = -0.0368^{+0.0006}_{-0.0009}$ CKMFitter, $\phi_s = -0.0368 \pm 0.0010$ UTFit
- Unique to LHC experiments thanks to the large Lorentz boost in p-p collisions $\rightarrow \Delta t = \Delta L / \gamma \beta c$
- Very good agreement of all LHC experiments with competitive measurements
 - In the long term will be important to understand how good is the approximation $\phi_s pprox \phi_s^{ccs}$
 - − LHCb is updating the measurement for the golden mode B⁰_s → J/ψK⁺K[−] to the full Run2 sample
 → ~4 more fb⁻¹

$B_{(s)}^{0}$ mixing with penguins

• Charmless B-hadron decays receive relevant contributions from $b \rightarrow s(d)$ penguin transitions $a = \sqrt{2} - \sqrt{2} - \sqrt{2} = \sqrt{2} - \sqrt{2} -$

- Physics BSM may appear in the loops

- Unique opportunity to compare the same quantity from pure SM processes and processes sensible to NP
 - Interpretation in terms of CKM
 parameters is not trivial and requires
 combination of several
 measurements (and inputs from theory)

$B_{(s)}^{0}$ mixing with penguins $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$

New Belle II measurements of $sin(2\beta^{eff})$ at MoriondEW (362 fb⁻¹)

New at MoriondEW

 $B^0 \rightarrow 3K_s^0$

∆ t [ps]

2

∆t[ps]

4

→ q = +1, B⁰_{tac}

 $q = -1, \overline{B}_{10}^{0}$

Belle II preliminary

Belle II preliminary

L dt = 362 fb⁻¹

_4

Ldt = 362 fb⁻¹

40 B⁰→K⁰₀K⁰₀K⁰₅TD

30

20

0.5

-0.5

Asymmetry

-8 -6 -4 -2 0 2 4 6 8

 $S_{CP} = 0.75^{+0.20}_{-0.23} \pm 0.04$

Already competitive with WA for some channels!

0.4 0.6 0.8 0.70 ± 0.02

 0.80 ± 0.12

 0.63 ± 0.06

 0.83 ± 0.17

 0.57 ± 0.17

1.2 1.4 1.6

$B_{(s)}^{0}$ mixing with penguins

- Brand new angular TD CPV measurement with $B_s^0 \rightarrow \phi(K^+K^-)\phi(K^+K^-)$ with full Run2 sample
- Pure penguin decay $ightarrow \phi_s^{s \overline{s} s} pprox 0$

 $\begin{aligned} & \text{Polarisation independent} \\ \phi_s^{s\overline{s}s} &= -0.042 \pm 0.075 \pm 0.009 \text{ rad} \,, \\ & |\lambda| = -1.004 \pm 0.030 \pm 0.009 \,, \end{aligned}$

Polarisation dependent (no evidence of polarisation dependence)

$$\begin{split} \phi_{s,0} &= -0.18 \pm 0.09 \text{ rad }, & |\lambda_0| &= 1.02 \pm 0.17 , \\ \phi_{s,\parallel} - \phi_{s,0} &= & 0.12 \pm 0.09 \text{ rad }, & |\lambda_\perp/\lambda_0| &= 0.97 \pm 0.22 , \\ \phi_{s,\perp} - \phi_{s,0} &= & 0.17 \pm 0.09 \text{ rad }, & |\lambda_\parallel/\lambda_0| &= 0.78 \pm 0.21 , \end{split}$$

More penguins

New at MoriondEW

- Predicted to be 0 with 1% theoretical uncertainty
- Uncertainty dominated by $A_{CP}^{K^0\pi^0}$

$$I_{K\pi} = \mathcal{A}_{CP}^{K^{+}\pi^{-}} + \mathcal{A}_{CP}^{K^{0}\pi^{+}} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}^{K^{+}\pi^{0}} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}^{K^{0}\pi^{0}} \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}}$$

PRL126(2021)091802

Belle II determination competitive with WA $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$

Consistent with SM expectation

Receiving contributions also from LHCb

The angle $\boldsymbol{\alpha}$

- Least well-known angle of the UT $\sigma_{lpha} \sim 4-5^\circ$
 - Determination based on isospin analysis of $B \rightarrow \pi \pi, \rho \rho, \rho \pi$ decays
 - Intrinsic theoretical uncertainty of $\sim 1^{\circ}$: from isospin breaking and EW penguin
- Precisions dominated by the B→pp system from Bfactories
 - Belle II has full access to all final states and in particular those with neutrals π^0 and $ho^+ o \pi^+ \pi^0$
 - LHCb can contribute in fully-charged final states (world's best TDCPV in $B^0 \rightarrow \pi^+\pi^-$)

Belle II precision is the same as WA!

New at MoriondEW

CPV in the charm sector

- Unique laboratory to study CPV in up-type quark decays
- Small CPV effects expected: $A_{CP} \sim 10^{-4} 10^{-3}$
- Theory predictions complicated by long distance contributions
- Huge charm data sample from LHCb lead to first observation of CPV in $D^0 \rightarrow h^+h^-$ decays in 2019
 - Great improvement in efficiency in Run2 thanks to software trigger and even greater improvement expected in Run3
 - New measurements in more channels needed to unravel the mystery

Systematic uncertainties controlled to 10⁻⁴!! May become necessary to scale to 10⁻⁵!!

- Evidence of direct CPV in $D^0
 ightarrow \pi^+\pi^-$ at 3.8 σ
- Exceeds at 2σ level U-spin breaking expectations

CPV in the charm sector

2

0.03

0.02

0.01

0

- New measurements in more channels needed to understand if CPV in charm is QCD effects or New Physics
 - Search for local CPV in $D^+_{(s)} \rightarrow 3K$ phase space
 - No evidence of local CPV has been found

- Mixing well established since over a decade but still a long path ahead to see CPV
- Contribution from BESIII crucial for long-term sensitivity
- LHCb largely dominates WA

Thanks to Patrick Koppenburg

Quite an impressive zoo of new particles from the LHC Including penta- and tetra-quarks

29

Including penta- and tetra-quarks

arXiv:2212.02716

Quite an impressive zoo of new particles from the LHC Including penta- and tetra-quarks

What is the nature of these penta- and tetra-quark?

Molecule model - nuclear forces

F.-K. Guo et al., Rev. Mod. Phys. 90 (2018) 015004

Tightly bound quarks - color forces

A. Esposito, A Pilloni, A. D. Polosa, Phys. Rept. 668 (2017) 1 J.-M. Richard, Few Body Syst. 57 (2016) 1185

F. Guo et al., Phys. Rev. D 92, 071502 (2015)

Di-J/ψ spectrum

- Observation of new structures in the di-J/ ψ spectrum from CMS and ATLAS
- More refined analysis is needed to establish the nature of these structures
- The resonance at 6.9 GeV previously observed by LHCb is confirmed [Sci.Bull.66(2021(1278)]

Continuous addition of new particles

Search for new physics with rare decays

- $B^0_{(s)} \rightarrow \mu^+ \mu^-$ decays are golden modes to search for New Physics
 - Pure penguin decays, highly suppressed in the SM
 - Very precise theoretical predictions

A lot has been done, but still a long way to observe B⁰ mode and eventually $B^0_{(s)} o \mu^+ \mu^- \gamma$ $_{36}$

Search for new physics with rare decays

Many other modes worth to search for, but much more challenging from the experimental point of view

Search for new physics with rare decays

- $B \rightarrow X_s \nu \overline{\nu}$ unique to Belle II thanks to fixed-energy environment
- Inclusive approach
 - Signal = high-pT isolated kaon
 - All the rest of the event is the other B

 $\times 10^{-2}$

8

6

4

2

fraction of events

Belle II

Competitive using only 63 fb⁻¹

5

PRL127(2021)181802

Neutral BCharged B

 $B^+ \rightarrow K^+ \nu \bar{\nu}$

4

Exp 8, Run 3123

 $T\bar{T}$

Not only rare B, but also charm...

arXiv:2212.11203

 $B(D^{*0} \rightarrow \mu^+\mu^-) < 2.6(3.4) \times 10^{-8} @90(95)\%$ C.L.

... and also strange

500

450

350

250

150

100

(MeV/c) 300

à 200 344

331.5±13.0

2500

2015 Data

[PRL122(2019)021802]

0.27±0.15

⁵⁰⁰ 439

400

350

0.08 ±0.05

450 436.79 ±3.83 0.53 ±0.13

2016-18 Data

[PRL126(2021)121801]

1.97 ±0.35

+0.09

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4} \pm 0.9) \times 10^{-11}$

 $BR(K_{L}^{0} \to \pi^{0} \nu \bar{\nu}) < 4.9 \times 10^{-9} @ 90\%$ C.L.

Great effort from NA62 (@SPS) and KOTO (@J-PARC) to observe these two extremely rare and elusive decays

Anomalies in $b \rightarrow sl \bar{l}$ EW penguins

PRL125(2020)011802

5

Angular observables

affected by cc-loop

10

- Rich set of observables with different degrees of theoretical "cleanliness"
- Long standing set of deviations from the SM expectations

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.5

-0.5

Several NP scenarios could explain the situation ٠

CDF '11

LHCb '12B

LHCb '14A LHCb '14C LHCb '21

20

15

10 $q^2 [\text{GeV}^2]$

PRD107(2023)014511

5

affected by form factors

Branching fractions

and cc-loop

0.5 -

 $\frac{10^{7} d\mathcal{B}^{(+)}}{10^{7} d\mathcal{B}^{(+)}} / dq^{2} \left[\text{GeV}^{-2} \right]$

 0.0^{-1}

More on $b \rightarrow sl l$ EW penguins

New LFU test from LHCb

arXiv:2212.09152 arXiv:2212.09153

New LFU test from LHCb

Contributions also from other experiments

CMS does not observe discrepancies in BR and angular quantities with respect to SM

Waiting for analyses with more data

First look at these modes from Belle II Similar sensitivity for $\mu^+\mu^-$ and e^+e^- modes

Radiative decays

- Decays governed by $b \rightarrow s\gamma$ transitions are complementary to $b \rightarrow sl\bar{l}$ and allow a different set of operators to be investigated
- Nice complementarity between LHCb (large statistics and access also to b baryons) and Belle II (cleaner environment and access to inclusive measurements)

Test LFU with semileptonic decays

Long-standing tension between measurements and SM expectation for LFU tests

World Average remains at about 3σ from the SM

Test LFU with semileptonic decays

Belle II has the unique access to inclusive LFU tests

arXiv:2301.08266

$$R(X_e) = \frac{B(B \to Xe\nu_e)}{B(B \to X\mu\nu_{\mu})} = 1.033 \pm 0.010(stat.) \pm 0.019(syst.)$$

Consistency test of angular asymmetries in $B \rightarrow D^* l \nu_l$

World leading measurements!!

Looking for LFV/LNV/BNV in B, D, K decays arXiv:2210.10412

PRD105(2022)032006 PRD99(2019)072006 PRD101(2020)031102 **BES**III

Decay mode	BES III UL on BR (90% CL)	Decay mode	BES III UL on BR (90% CL)
D⁰→pe+	1.2x10-⁰	D+→Σ⁰e+	1.7x10⁴
D⁰→pe-	2.2x10-⁰	D+→Σ⁰e+	1.3x10-⁴
D+→∕\e+	1.1x10⁴	J/Ψ→Λ _c e [.]	6.9x10⁻ ⁸
D+→7e+	6.5x10 ⁻⁷	J/Ψ→pK ⁻ Λ J/Ψ→pK ⁻ Λ	4.4x10 ⁻⁶ NEW @ ICHEP

Shown at KAON2022

Decay channel	Previous \mathcal{B} UL [8]	NA62 ${\cal B}$ UL	$\operatorname{improvement}$	-
$K^+ ightarrow \pi^- \mu^+ \mu^+$	$8.6 imes 10^{-11}$ [15]	4.2×10^{-11} [9]	\sim factor 2	
$K^+ \to \pi^- e^+ e^+$	$6.4 imes 10^{-10}$ [16]	5.3×10^{-11} [10]	\sim factor 12	MACO
$K^+ \to \pi^- \pi^0 e^+ e^+$	_	$8.5 imes 10^{-11}$ [10]	first search	MADZ
$K^+ \to \pi^- \mu^+ e^+$	$5.0 imes 10^{-10}$ [16]	4.2×10^{-11} [11]	\sim factor 12	NA48
$K^+ \to \pi^+ \mu^- e^+$	$5.2 imes 10^{-10}$ [16]	$6.6 imes 10^{-11}$ [11]	\sim factor 8	A
$\pi^0 \to \mu^- e^+$	3.4×10^{-9} [16]	3.2×10^{-10} [11]	\sim factor 10	2 Card
$K^+ ightarrow \mu^- \nu e^+ e^+$	$2.1 imes 10^{-8} \ [17]$	8.1×10^{-11} [12]	\sim factor 250	

Experimental reach improve with increasing statistics (and control of backgrounds)

[1]

[3]

A look to the future

Numbers are indicative

Physics reach for LHCb and Belle II

Belle II Upgrade snowmass white paper

LHCb Upgrade II FTDR (LHCb-TDR-023)

Observable	2022	Belle-II	Belle-II	Observable	Current LHCb	Upgr	ade I	Upgrade II
	Belle(II).	5 ab^{-1}	50 ab^{-1}		$(up to 9 fb^{-1})$	$(23{\rm fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{\rm fb}^{-1})$
	BoBor	0 40	00 00	$\underline{\mathbf{CKM} \text{ tests}}$				
	DaDai			$\gamma ~(B ightarrow DK,~etc.)$	4° [9,10]	1.5°	1°	0.35°
$\sin 2eta/\phi_1$	0.03	0.012	0.005	$\phi_s \; ig(B^0_s o J\!/\!\psi\phiig)$	$32 \mathrm{mrad}$ [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°	$ V_{ub} / V_{cb} (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6% [29,30]	3%	2%	1%
α/ϕ_2 (WA)	4°	2°	0.6°	$a_{\rm sl}^a \left(B^0 \rightarrow D^- \mu^+ \nu_\mu \right)$	$36 \times 10^{-4} [34]$	8×10^{-4}	5×10^{-4}	2×10^{-4}
$ V_{ub} $ (Exclusive)	4.5%	2%	1%	$a_{sl} (B_s^s \to D_s \ \mu \ \nu_{\mu})$	33 × 10 - [35]	10 × 10 -	7 × 10 -	3×10^{-2}
$\frac{S_{CP}(B \to n'K_{\rm c}^0)}{S_{CP}(B \to n'K_{\rm c}^0)}$	0.08	0.03	0.015	$\frac{\Delta A_{CP}}{\Delta A_{CP}} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	$29 imes 10^{-5}$ [5]	$13 imes 10^{-5}$	$8 imes 10^{-5}$	$3.3 imes 10^{-5}$
$A_{CP}(B \rightarrow \pi^0 K_{C}^0)$	0.15	0.07	0.025	$A_{\Gamma} \ \left(D^0 ightarrow K^+ K^-, \pi^+ \pi^- ight)$	11×10^{-5} [38]	$5 imes 10^{-5}$	$3.2 imes 10^{-5}$	$1.2 imes 10^{-5}$
$G(\mathbf{D} \times \mathbf{M}_{S})$	0.10	0.01	0.020	$\Delta x \left(D^0 ightarrow K^0_{ m s} \pi^+ \pi^- ight)$	$18 \times 10^{-5} [37]$	$6.3 imes10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes 10^{-5}$
$S_{CP}(B \to K^{*\circ}\gamma)$	0.32	0.11	0.035	Rare Decays				
$R(B ightarrow K^* \ell^+ \ell^-)^\dagger$	0.26	0.09	0.03	$\overline{\ \ }\mathcal{B}(B^0 ightarrow \mu^+ \mu^-)/\mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	$^{-})$ 69% $[40,41]$	41%	27%	11%
$R(B ightarrow D^* au u)$	0.018	0.009	0.0045	$S_{\mu\mu}_{(2)}(B^0_s o\mu^+\mu^-)$	—	—	—	0.2
$R(B \to D\tau\nu)$	0.034	0.016	0.008	$A_{\rm T}^{(2)} (B^0 \to K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$\mathcal{B}(B \to \tau \nu)$	24%	9%	4%	$A_{\rm T}^{\rm AII} \left(B^0 \to K^{*0} e^+ e^- \right)$	$\begin{array}{ccc} 0.10 & [52] \\ +0.41 & [51] \end{array}$	0.060	0.043	0.016
$D(D \setminus K^* u\bar{u})$		250%	00%	$\mathcal{A}_{\overline{\phi\gamma}}^{-} (B_s^{\circ} \to \phi\gamma)$	-0.44 [51]	0.124	0.083	0.033
$D(D \to K \ \nu\nu)$		2070	970	$S_{\phi\gamma}(B_s^\circ \to \phi\gamma)$	0.32 [51] ± 0.17 [50]	0.093	0.062	0.025
$\mathcal{B}(\tau \to \mu \gamma) \text{ UL}$	42×10^{-9}	22×10^{-9}	$6.9 imes 10^{-9}$	$\alpha_{\gamma}(\Lambda_b^o \to \Lambda\gamma)$	-0.29 [53]	0.148	0.097	0.038
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	21×10^{-9}	3.6×10^{-9}	0.36×10^{-9}	Lepton Universality Tests				
\sim (· · · · · · · · · · · · · · · · · · ·	/ 10	0.0 / 10	0.00 / 10	$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
				$R_{K^*} \ (B^0 o K^{*0} \ell^+ \ell^-)$	0.12 [61]	0.034	0.022	0.009
				$R(D^*)~(B^0 ightarrow D^{*-} \ell^+ u_\ell)$	$0.026 \ [62, 64]$	0.007	0.005	0.002

- It is fundamental to stress that LHCb and Belle II physics programmes complement each other exploiting the different environments provided by the LHC and KEK-II accelerators
- Nevertheless a large part of the programmes overlap allowing for mutual cross-check of key measurements

Constraining the UT to the per-mille level

Constraining the UT to the per-mille level

Improvements in lattice QCD inputs expected in the next 10 years are included in these predictions and are fundamental to achieve them

Constraining the UT to the per-mille level

HL-LHC yellow paper

New Physics with generic flavour couplings

Minimal Flavour Violation scenario

In the HL-LHC era the constraint on the UT apex will be able to test the presence BSM particles with masses 3 times higher than now a nd well above those reachable with direct searches

Test CPV in charm to unprecedented levels

LHCb (and its upgrades) will be the biggest charm factory ever It is essential to exploit it, but that will require extreme control of experimental and theoretical systematics

Contribution from GPD at LHC

Conclusions

- Flavour physics has an history rich of successes and discoveries
- Its present demonstrates the **importance to invest in its future**
 - Constraining the apex of the UT will remain one of the best long-term method to test the consistency of the SM
 - Precise flavour physics measurements allow NP scales beyond those accessible by direct searches to be investigated
- Advancements in both experiments and theory are fundamental to exploit the full potential of flavour physics
- Sinergy and complementarity between different experiments will be crucial
 - LHCb and Belle II will have a leading role, but will soon be limited without the contribution from BESIII
 - General-purpose Detectors (ATALS and CMS) will also bring their relevant contribution as well as dedicated experiments like NA62 and KOTO
 - Had not time to discuss all the contributions from other experiments like Muon g-2, COMET, Mu2e, MEGII, Mu3E, PIONEER...

BACKUP

- From the study of $B^0_{(s)}$ mixing come also other constraints to the UT apex thanks to Δm_d and Δm_s
 - Experimental precision dominated by LHCb
 - Interpretation in terms of CKM strongly limited by lattice QCD

Looking for LFV/LNV/BNV

The violation of LFU is usually explained by models that also predict LFV and LNV close to current experimental reach

The LHCb Upgrade I

- Almost completely new detector is being commissioned this year
 - Many detectors have been improved and the DAQ adapted to acquire data at 30 MHz with fully software trigger
 - Great improvement in trigger efficiency for kaon, charm and hadronic B decays

The LHCb Upgrade I

The LHCb Upgrade II

LHCb-TDR-023

Belle II plans

64