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A Permanent EDM Violates both T & P Symmetries:

L
o

Reminder: batteries are allowed in the SM!




Snowmass paper on EDMs,
why many EDMs:

Operator Loop order Mass reach
Electron EDM I 48 TeV1/10~29 e cm /dirax
2 2TeV4/10~29 e cm/dmax
Up/down quark EDM 1 130 TeV\/ 1029 ¢ cm/dimax
2 13 TeV\/10‘29 ecm/dpax
Up-quark CEDM 1 210 TeV \/ 10-29 cm /dmax
2 20 TeV/10-29 cm/dpp=>
Down-quark CEDM 1 290 TeV \/ 1029 cm /@
2 28 TeV'1/10-29 cm/d™
Gluon CEDM | 2 (ccmy) | 22TeV {/10-29 cm/(100 MeV) /=
2 [260TeV/10-29 cm/(100 MeV)/diz

TABLE I. Crude estimate of the mass reach of different operators. See text for explanation of the notation
and assumptions used in deriving the estimates.

dp=—(1540.7)-107% fefm
—(0.20 £ 0.01)d,, + (0.78 +0.03)dy + (0.0027 & 0.016)d;
—(0.55 £ 0.28)ed,, — (1.1 4 0.55)edy + (50 £ 40) MeVed .
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Electric dipole moments and the search for new physics
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EDM timelines, from Snowmass 2021 (2022).

Sensitivity to:
© 09,d, dg, W, Cg
|dy| <1072 - cm . Gis
— l I
|dy|~10"2%€ - cm ldgl~10"2°e - cm ldyel~10"2%¢ - cm . HEDM

l

ldyl <3-1027 e-cm  |dpl <3:10728e-cm

| Blum, Winter et al
-gen. hic EDI 9 ‘

]~107"* |§]~10-12 |f]~10-13
eEDM (ACME-IlI, JILA)
] . l next-gen. eEDM (PolyE|
|del~1073%¢ - cm |del~1073% e - cm |de|l~10732 ¢

2209.08041v1 [hep-ex] 16 Sep 2022

Figure 3-1. Timelines for the major current and planned EDM searches with their sensitivity to the
important parameters of the effective field theory (see Fig. 3-2 for details). Solid (shaded) symbols indicate
each experiment’s primary (secondary) sensitivities. Measurement goals indicated by the black arrows are
based on current plans of the various groups. 5
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Snowmass paper on EDMs

Experiment |Location [UCN source Features Ref.
n2EDM PSI Spallation, SD, Ramsey method, double cell, *"Hg|[l52]
Neutron EDM comagnetometer
PanEDM ILL Reactor, LHe Ramsey method, double cell, ¥9Hg|[153]
comagnetometer
10-1 LANL nEDM |LANL |Spallation, SDs Ramsey method, double cell, *"Hg|[l3]
j 0 . ' ' ' m  Beam comagnetometer
610_20 e Bragg scatterint  Tycan TRIUMF |Spallation, LHe Ramsey method, double cell, '*Xe|[15]
2102 . : 32: :i:isl)ex'n‘ comagnetometer
°° } B 5 UCN (PSI) nEDM@SNS [ORNL |In-situ production|Cryogenic, double cell, 3He comagne-|[!39]
1022 in LHe tometer, 3He as the spin analyzer

1960 1970 1980 1990 2000 2010 2020 2030 2040
Publication year

FIG. 3. Evolution of the nEDM results along with projected future results

TABLE III. A list of the nEDM experiments that are being developed



Snowmass paper on EDMs

Figure: Laser-cooled polyatomic molecules, optically trapped, with full quantum control. Such a platform can be used to access new physics at the PeV scale.
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FIG. 5. Electron EDM limits versus time, along with new physics reach for one-loop and two-loop effects
(see Eq. 2). All electron EDM experiments to date use AMO techniques. The solid line indicates the
most sensitive experimental limit, including the species used. The shaded area indicates potential future
improvements discussed in the text. Improvements in the next few years are driven largely by improvements
to existing experiments and are quite likely, though as we go more into the future the projection becomes
increasingly speculative and uncertain.



Storage ring EDM experiment

Snowmass white paper: next steps - CDR, proposal, TDR
10-29 e-cm; fits in BNL AGS tunnel

» World-class, high intensity polarized sources for protons, deuterons, *He, other nuclei
* ring design PRD105:032001 (2022), storage ring experiment Rev.Sci.Instrum.87:115116 (2016)

Possible interesting results within a decade (compatible with EIC schedule)

Competitive EDM sensitivity:
* New-Physics reach ~10° TeV.
* Best probe on Higgs CPV, Marciano

* proton is better than H-> yy
* 30x better than electron with same EDM.

* Three orders of magnitude improvement in 6,cp sensitivity.

» Direct axion dark matter reach (best exp. sensitivity at very low frequencies).
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The storage ring proton EDM experiment
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Large statistics available, opportunity for great sensitivity improvement in EDMs



CAPP-Physics: strong CP-problem and axion dark matter

 Dark Matter and CP-violation are both on the top ten most SR
important Particle Physics questions : ¢

& o A

* The axion coupling 1s feeble, it requires the effective application C A P
of latest state of the art technology and lots of ingenuity (high-
risk, high-physics-potential) Axion and Predision

Physics Research

* CAPP (est. October 16, 2013) has acquired the equipment and
has developed the technology, know-how, and infra-structure to
effectively probe the 1-8 GHz in the next five years at DFSZ
sensitivity. CAPP reached top of its field in less than ten years.

* Projection: All the interesting axion frequencies will be probed
globally in the next 10-20 years




Dark Matter and Isaac Newton (1642-1726)

Isaac Newton unified the Physics phenomena:
falling of an apple with the planet, moon, star,
sattelite, comet motions, under Gravity!

& ’ﬁai\‘ % He clarified the view of Heavens for Humanity!
| @&

He also gave us the ability to see what cannot be seen with ordinary methods. Looking
from deviations from his rules we are able to sense the presence of Dark Matter.
A dark matter discovery 1s of High Order!

11



Axion couplmg VS. aX|on mass
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Axion Couplings {

Y

9
or

* Gauge fields: fjw

* Electromagnetic fields (microwave cavities)

L = —gZW aF“VFW = gawaljf-é

° Int

* Gluon Fields (Oscillating EDM: CASPEr, storage ring EDM)

L =2G 6™
UV

Int
a

® Fermions (coupling with axion field gradient, pseudomagnetic field,
CASPEr-Electric, ARIADNE; GNOME)

d,a ,
:T\Pfy Iy

a

int 3



CAPP-12TB RUN4, engineering run, spring 2022

CAPP in the DFSZ club. Axion search around 4.55 peV (1.09 — 1.11 GHz) with
DFSZ. sensitivity, scanning at 1.4MHz/day
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CAPP-12TB RUN4, engineering run, spring 2022

PHYSICAL REVIEW LETTERS 130, 071002 (2023)

Axion Dark Matter Search around 4.55 peV with
Dine-Fischler-Srednicki-Zhitnitskii Sensitivity
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® (Received 19 October 2022; revised 9 December 2022; accepted 12 January 2023; published 16 February 2023)

We report an axion dark matter search at Dine-Fischler-Srednicki-Zhitnitskii sensitivity with the CAPP-
12TB haloscope, assuming axions contribute 100% of the local dark matter density. The search excluded
the axion-photon coupling g,,, down to about 6.2 x 107'® GeV~" over the axion mass range between 4.51
and 4.59 peV at a 90% confidence level. The achieved experimental sensitivity can also exclude Kim-
Shifman-Vainshtein-Zakharov axion dark matter that makes up just 13% of the local dark matter density.
The CAPP-12TB haloscope will continue the search over a wide range of axion masses.

DOLI: 10.1103/PhysRevLett.130.071002
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FIG. 2: CAPP-12TB receiver diagram.
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New data: CAPP-MAX, as of April 2023

Achieved already sensitivity (preliminary), scanning at 3MHz/day
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New data: CAPP-MAX, as of April 2023
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Reaching ~120 MHz at DFSZ sensitivity by end of April 2023
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Institute for Basic Science, South Korea
2011: Major Investment in Basic Sciences

* IBS-CAPP 1s scanning at DFSZ sensitivity for
axions over 1 GHz.

» IBS-CAPP with its many innovations including its  pg®

HTS-cavities (Q>107 at 8T) is currently on top of its T== . ===
field internationally in less than ten years since its " F 45 I i
establishment!

* IBS-CAPP has demonstrated that the original IBS
idea was correct: have a great idea and 1f selected,
IBS will fund 1t for ten years to materialize it.



The storage ring EDM Physics




The storage ring proton EDM experiment

Two main physics goals of pEDM
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 CP-violation probing New Physics up to 10° TeV
* 0ocp and axion dark matter

Physics motivation

Big question: Is there BSM CPV?

arXiv:2205.00830v1 [hep-ph] 25 Apr 2022

di (e - cm) 4 Peter Winter?, Eunil Won'®, Anatoli Zelenski*, and Konstantin Zioutas®®
—16 a = = ! Aristotle University of Thessaloniki, Thessaloniki, Greece
10 3 Natural” order from Strong CPV O = 0(1) 2 Argonne National Laboratory, Lemont, Illinois, USA
~ 3 Boston University, Boston, Massachusetts, USA
—-26 . L. — S0 4 Brookhaven National Laboratory, Upton, New York, USA
10 = — EXperlmental upper limit = Strong CcP pr0b|em: 6<10 5Budker Institute of Nuclear Physics, Novosibirsk, Russia
: 8Center for Azion and Precision Physics Research, Institute for Basic Science,
Physics reach of d, ~ 0(107%°) e - cm: Daejeon, Korea
BSM CPV Y P . . e "Cornell University, Ithaca, New York, USA
1. Three Qrders of magnltuld% mprovement Iné. 8 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
-29 : &g 2. Sensitive to Myp = 0(10°7°) TeV. 9 Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany
. ic (~ —28 , . i Indiana University, Bloomington, Indiana, USA
10 jl  Projected pEDM sensitivity. 5 Baryogenesis (~ 10728 e - cm expected in MSSM). Y
’ : < i " [stanbul Technical University, Istanbul, Turkey
4. Two-loop Higgs coupling: tan ¢pyp = 0(1077).
10731 —+ Upper bound from the SM expectation (Weak CPV: CKM & PMNS)

Storage ring pEDM experiment
o First "direct” measurement/constraint of d,, with improvement by 10 from the best current d,, limit.
o Complementary to atomic & molecular and optical (AMO) EDM experiments.
o Dedicated ALP/vector dark matter or dark energy search.
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* Snowmass/white paper, CDR, SO
proposal/TDR, prototype/string-test, ring N T T
construction (3-5 years), storage (2-3 years)
to first publication

* Cost estimation currently at BNL .\\

* POSSibIe intereSting rESUItS Within d 1960 1970 1980 1990 2000 2010 2020 2030 2040
decade.

A long road to final sensitivity, but confident we can N s

reach the goals, based on muon g-2 experience



Storage ring probes of DM/DE

- - P. Graham and S. Rajendran, PRD 88, 035023 (2013)
e Couplings with dark matter (DM) and dark energy (DE) P. Graham et al., PRD 103, 055010 (2021)

o ALP DM-EDM (gqnyady - E) = oscillating EDM at m,,. For the QCD axion: dI%CD ~ 1073* cos(mgt) e - cm.

o ALP or vector DM wind (g,yyVa - 65) = anomalous longitudinal oscillating B field.
o DE wind = anomalous longitudinal B field.

Waxion—EDM X cos(mat) X wpy X cos(mat) B
Wpg X

These are spin angular frequency vectors.
Spin precesses around the net w vector.

On Kim (bigstaron9@gmail.com) Snowmass Rare Processes and Precision Frontier



Storage ring probes of DM/DE

- - P. Graham and S. Rajendran, PRD 88, 035023 (2013)
e Couplings with dark matter (DM) and dark energy (DE) P. Graham et al., PRD 103, 055010 (2021)

o ALP or vector DM wind (g,yyVa - 65) = anomalous longitudinal oscillating B field.
o DE wind = anomalous longitudinal B field.

Storage ring is an optimal probe for wind coupling since f is large!

wpy X cos(mgt) B g

Wpg X f§ 5 >
—
DI Wing =t~ va

Gann (GeV™')

10713 AD. ~ 9aNNPV2Ppy T
prec — Sm(mu )
mg,
~14
10 1 1 1 L L 1 1 L L 1
102 10720 107 1071 107" 10712

mass (eV)

On Kim (bigstaron9@gmail.com) Snowmass Rare Processes and Precision Frontier



Storage ring probes of DM/DE

- - P. Graham and S. Rajendran, PRD 88, 035023 (2013)
e Couplings with dark matter (DM) and dark energy (DE) P. Graham et al., PRD 103, 055010 (2021)

o ALP DM-EDM (gqnyady - E) = oscillating EDM at m,,. For the QCD axion: dI?,CD ~ 1073* cos(mgt) e - cm.

First experimental application at COSY 2019-2022
Paper just accepted by PRX

ALP-EDM coupling

logi0(Frequency/Hz)
. 9 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
W xion—EpM X cos(mgt) X . .
SN1987A
-8 -8
-10 -10
=12 -12
:I? =14 -14
g1
O -16 -16
3
. } ] ] ] S -18 -18
* Storage ring probes of axion-induced oscillating EDM 3
S. Chang et al., PRD 99, 083002 (2019). 8 7, ad
* Complementary method using an rf Wien filter 7% s i -2
On Kim and Y. Semertzidis, PRD 104, 096006 (2021) - R 06_ _________________ : "
ey e . . - < -
* Parasitic measurement with pEDM experiment | "5%0“‘"96 SRSt
o Low frequency: Periodogram analysis. 20 170
o High frequency: Resonant rf Wien filter. 28 1

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6
IoglO (ma /EV)

On Kim (bigstaron9@gmail.com) Snowmass Rare Processes and Precision Frontier



Storage ring proton/deuteron EDM

* Oscillating EDMs, Graham & Rajendran, PRD88, 035023, 2013

* Resonance: axion dark matter and g-2 frequencies (PRD99, 083002, 2019
and EPJ C80, 107, 2020). First run spring 2019 at COSY/Juelich/Germany.

* Storage ring probe of DM and DE (PRD103, 055010, 2021)

* New method with RF-Wien..., On Kim (PRD104, 096006, 2021), great
advantage on systematic errors

ALP frequency [Hz]
1077 1074 101 102 10° 108

The RF-Wien filter 1s NOT operating
at the g-2 frequency, avoiding spin
dynamics systematic error!

It can be fully implemented in the
present muon g-2 ring by injecting =2
polarized protons and/or deuterons

1
10724 10-21  10-8 10715 1012 1079 1076 25
ALP mass [eV/c?]



Storage ring pEDM at 10-*’e-cm, best hadronic EDM exp.

* High physics reach at hundreds of TeV New-Physics mass scale, improve
sensitivity to O cp by three orders of magnitude. Best sensitivity to Higgs CPV

* If found, 1t can help explain the matter-antimatter asymmetry of the universe

* Direct search for low/very low frequency axion dark matter

* The opportunity: High intensity polarized proton and deuteron beams available.
I'he natural beam lifetime 1s also long, potential for very high statistical accuracy

* The challenge: Systematics, mostly related to ring alignment, high statistical
accuracy helps... a



Storage ring lectric ipole oments

Phys. Rev. Lett. 93, 052001 (2004)

kspin = kinXKkout sensitive

/ direction Frozen spin method:

>

. Kepi
polarized spin

beam .
=

* Spin aligned with the momentum vector

* Radial E-field precesses EDM/spin vertically

* Monitoring the spin using a polarimeter

POLARIMETER

27



Storage Ring EDM experiments, frozen spin method

Pure electric bending, w/ “magic” momentum

F.J.M. Farley e al., “A new The origins of the method
method of measuring electric trace right back .tO the
dipole moments in storage muon g-2 experiment.

rings,” Phys. Rev. Lett. 93,

052001 (2004).
[

mc
Ve
moment anomaly

, A. magnetlc



Electric fields: Freezing the g-2 spin precession
271 A, =2
— _i . E L XE o
Wa™ m[a (p) ] c 0

« The g-2 spin precession is zero at “magic” momentum
(3.1GeV/c for muons,...), so the focusing system can be electric

pFWltha—G— > \/1+1/a

« The “magic” momentum concept with electric focusing was first
used in the last muon g-2 experiment at CERN, at BNL & FNAL.
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Proton Statistical Error (233MeV): 10-?° e-cm

Phys. Rev. D 104, 096006 (2021)

2.33h
Oq4 —
ERPA\/chTthot
7, :2x10°s Polarization Lifetime (Spin Coherence Time)
A :006

Left/right asymmetry observed by the polarimeter
P :0.8 Beam polarization
N, : 4x107%p/cycle Total number of stored particles per cycle (103s)

T 2x107s Total running time per year

1% Useful event rate fraction (efficiency for EDM)
Er : 4.5 MV/m Radial electric field strength
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Systematic errors
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3SHe Co-magnetometer in nEDM experiment

Magnetic Field Drift Correction

If nEDM = 10-26 e-cm, ; S

N 29.9295
i b | - Raw neutron frequency
. ~ A
10 kV/cm — 0.1 uHz shift > 29.92901 Corrected frequency bl
c E I i
qé 29.9285 -
~ Bfieldof2 x 10 ‘15T, ® -
= 29.9280 - 5
- 10T
5 ]
S 29.9275
@ .
Co-magnetometer : = 299270
S 1 %
. . S 29.9265 - \:.?- -,f.f'ak?'{‘;'f'~’-";‘t~ £ manro SRR [
Uniformly samples the B Field 2 _ St o BB 00 ;
faster than the relaxation time. 29.9260

—
-
—
—

All EDM experiments are extremely challenging i i ° - = .

Same with storage rings, muon g-2/EDM, proton EDM,...

Data: ILL nEDM experiment with 1°°Hg co-magnetometer

Run duration (hours)

EDM of 199Hg < 1028 e-cm (measured); atomic EDM ~ Z? — 3He EDM << 10-3% e-cm

Under gravity, the center of mass of He-3 is higher than UCN by Ah = 0.13 cm,
sets AB = 30 pGauss (1 nA of leakage current). AB/B=10-3.
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Storage Ring Electric Dipole Moments exp. options

Fields

Example

EDM signal term

Comments

Dipole magnetic field (B)
(Parasitic)

Muon g-2

Tilt of the spin precession plane.

(Limited statistical sensitivity
due to spin precession)

Eventually limited by geometrical
alignment.

Requires consecutive CW and CCW
injection to eliminate systematic errors

Combination of electric & | Deuteron, 3He, | Mainly: High statistical sensitivity.
and magnetic fields (E, B) proton, muon, ds - /(. = Requires consecutive CW and CCW
: . —=d><(va) o : L L
(Combined lattice) etc. dt injection with main fields flipping sign
to eliminate systematic errors

Radial Electric field (E) & Proton, etc. 45 - . Large ring, CW & CCW storage.

Electric focusing (E) —=dXxXE Requires demonstration of adequate

(All electric lattice) dt sensitivity to radial B-field syst. error

Radial Electric field (E) & Proton, etc. Large ring, CW & CCW storage.

Magnetic focusing (B) ds - - Only lattice to achieve direct

(Hybrid, symmetric lattice) —=dXE cancellation of main systematic error
! sources (its own “co-magnetometer”).

GOLD STANDARD! .




Efftect as a function of azimuthal harmonic N

COMPREHENSIVE SYMMETRIC-HYBRID RING DESIGN FOR A ...

PHYS. REV. D 105, 032001 (2022)

10—8 _

@ Cw
-©- CW - CCWw s
—— Target sensitivity

1079

E-field

10—10 L

10—11 5

dS,/dt [rad/s]

10—12 |

10—13 L

5 10 15 20

A solid starting Igoint N

FIG. 7. Longitudinal polarization case S; =1, sensitive to
EDM. Vertical spin precession rate vs E, =10 V/m field N
harmonic around the ring azimuth. For N = 0, the precession rate
for the CW (or CCW) beam is around 5 rad/s. The difference of
the precession rates for CR beams (orange) is below the target
sensitivity for all N. Irregularities of the low values are due to the
inability to determine the exact precession rate from the simu-
lation results. Hence, the points only show a statistical upper limit
of the possible vertical precession rate; actual rates could be
lower. More about this is in Appendix B.

107°
B-field
0
©
o
:' 10—11 i
8
U)>‘
S
10—12 I
-@- Cw
—— 1nrad/s spec
10_13 - . L A I
0 5 10 15 20

N

FIG. 8. Longitudinal polarization case S; = 1, CW beam only.
Vertical spin precession rate vs B, = 1 nT field N harmonic
around the ring azimuth. The magnetic field amplitude is chosen
to be similar to beam separation requirements in Sec. IVA, and
more than B, = 1 nT splits the CR beams too much. Irregular-
ities of the low values are due to the inability to determine the
exact precession rate from the simulation results. Hence, the
points only show a statistical upper limit of the possible vertical
precession rate; actual rates could be lower. More about this is in

Appendix B.
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Ring planarity:

The average vertical speed in deflectors
needs to be zero!

0.1 mm
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Hybrid, symmetric lattice storage ring. Great for systematic error reduction.

4.16m40cm
Z. Omarov et al., S. REV. D 19#£032001 (2022) ===
o 2 e,
VLR e (@)  Hybrid (fourfold) Symmetric-Hybrid
kg kg 100} 10
.W' ‘ﬂnm' ‘ﬂnm' ‘ﬂnﬁ' ‘ﬂ"r —— Target sensitivity
®- ®
k1 0
k3 'E 10—5_ 51
k3k4 k4k :\;
.k3 k4 § L kg‘
k: k1 k‘Z k1 k3
10710 ¢ o o o ¢ o 10°10¢
0 10 20 40 0o 1 20 30 40
Misali Quad index Misa d Quad index

Sensitivity of radially polarized beams (sensitive to V. Dark Matter/Dark Energy,
P. Graham et al., PRD, 055 010, 2021), most sensitive to vertical velocity problem

EDM is probed with longitudinally polarized beams, less sensitive to this effect by >103
Use radially polarized beams to align the ring (spin based alignment) and monitor background



Vertical velocity and geometrical phase effects:

Magnetic quadrupoles 0.2T/m, positioning accuracy dominates background B-fields
Mitigation by flipping quad polarity in ~10° separate beam injections

ZHANIBEK OMAROV et al. PHYS. REV. D 105, 032001 (2022)
S (a) (b) (c)
4.0x10 @ CW beam data ° -@- Combined precession data E 400t
—— Target sensitivity 2.00)(10—9 | —— Target sensitivity 3
= BI0x107% )| == @ 9 € 300
= =~ 1.50x107°f . . o
= E After combmartlon =
= =51 = -9 - SR | |
~~ ° ~~
% B & 5.00x10710} ]
T 1.0x107°¢} © £ 100 ~ou® °
0 O 000 R[o .
0 . | (o] L . . . | o 0 | | | |
0.0 2.5 5:0 5 100 0.0 2.5 5:0 5 1010 0 2 5.0 75 10.0
Quadrupole positions, o [um] Quadrupole positions, o [um] Quadrupole positions, o [um]

FIG. 9. (a) Longitudinal polarization case, CW beam only. Vertical spin precession rate (absolute) vs random misalignments of
quadrupoles in both x, y directions by rms ¢ with different seeds per each point (when the same seeds are used everywhere, the y = kx?
fit is perfect, meaning that every point can be extrapolated to any rms ¢ value using this functional form). Combination with CCW and
quadrupole polarity switching achieves large cancellation—see part (b). (b) CW and CCW beam and with quadrupole polarity
switching. Total combination as presented in Appendix C. Notably, the background vertical spin precession rate (absolute) stays below
the target sensitivity. Irregularity of the points is discussed in Appendix B. (c) Correspondence between CR beam separation and rms ¢

quadrupole misalignments.



Classification of systematic errors at 10-2° e-cm for

hybrid-symmetric lattice

v’ Alternate magnetic focusing allows simultaneous CW & CCW storage and

Shields against external B-fields.

Vertical dipole E-fields eliminated (its own “co-magnetometer’), unique feature of this lattice.

v’ Symmetric lattice significantly reduces systematic errors associated with vertical

velocity (major source). Using

Radial polarization direction for first ring lattice alignment.
Longitudinal, radial and vertical polarization directions, sensitive to EDM and/or systematic

CITOTIS.

v'Set strict ring planarity requirements <0.

' mm; CW & CCW beam separation

<0.0Imm, and quad current flipping resolve i1ssues with geometrical phases. Key

issue: stability. Design the ring with stability in mind.
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Spin-based alignment/background reduction
for greater order than dipole E-fields

* Omarov’s method: a combination of background
fields can create false EDM signals. Artificially
inflate one component to reduce the other.

From Zhanibek Omarov’s presentation

Varying B,

- Slope indicates m present for each N

* Vary the radial B-field (B,) and

observe the ds,/dt slope vs. B,. O'Oz’\
: The EDM Signal dOGS not depend - Vertical offset indicates EDM
on the value of B,. §  0of

* Tune out the background field
(here electric field focusing) until
we get zero slope in ds,/dt vs. B,. -002] s

-1.0x10"7 -5.0x1078 0 5.0x107° 1.0%107

A . . B, [T] (external)
Zhanibek Omarov zhanik@=kaist.ac.kr 1




Symmetries against systematic errors
* Clock-wise (CW) vs. Counter-Clock-Wise (CCW)

* Eliminates vertical Electric field background

* Hybrid lattice (electric bending, magnetic focusing)
 Shields against background magnetic fields

* Highly symmetric lattice (24 FODO systems) k11<

* Eliminates vertical velocity background

* Positive and negative helicity
* Reduce polarimeter systematic errors

\

e Flat ring to 0.1 mm, beams overlap within 0.01 mm, >¢
spin-based alignment, quad current flipping
* Geometrical phases; High-order vertical E-fields

4.16m40cm

’_—-_\
’_———\

e~

12.5m

A = e~

CCW

CW



Protons 1n a hybrid-symmetric ring: no new technology required

* No need to develop/test new technology
* Simultaneous CW/CCW beam storage 1s possible
 Electric field ~4.5 MV/m with present technology

* Hybrid/symmetric ring options are simple. Large tune in both planes, beam position monitor
(BPM) tasks are achievable with present technology.

* Estimated SCT are large, injection into ring works, while all primary systematic error
sources are kept small.

* Do a “lattice string test”, assemble 1/48™ of the ring and test for
* Cross talk between systems (E-field bending plates, magnetic quads, BPMs,...)
* Time stability of voltage, position and direction of fields
* Check/monitor ground stability alignment due to tides, vehicle motion, magnet powering,...

 After protons, add dipole magnetic field in bending sections:
 Can do proton, deuteron, *He, muones,... 41



COSY results
1. With left-right detectors, forward-reverse polarization, there is enough

redundancy to correct polarimeter systematic errors below 10 urad
(achieved, 4-day run). No obstacles see to further reductions to 1 prad.!!
2. Although unstable against depolarization, field corrections extend
polarization lifetime past 1000 s.[2
3. Feedback tied to polarization phase in plane can hold spin direction
constant to within 0.1 rad.!! 0
4. A polarimeter prototype works.!4! '

62041 mm

All tests were made with 0.97 GeV/c deuteron beam. p ‘ ,
[1] NIM A 664, 49 (2012) [3] PRL 119, 014801 (2017) Slide by Ed Stephenson

[2] PRL117,054801 (2016) [4] JINST 15, P12005 (2020)




Hybrid, symmetric lattice storage ring,
designed by Val. Lebedev (FNAL)

Z. Omarov et al.,, PHYS. REV. D 105, 032001 (2022)

4.16m40cm

’——\
’_———\
——p

12.5m

Sensitivity goal

102%e-cm

TABLE I. Ring and beam parameters for Symmetric Hybrid
ring design

Quantity

Value

Bending Radius Ry

Number of periods

Electrode spacing

Electrode height

Deflector shape

Radial bending F-field
Straight section length
Quadrupole length
Quadrupole strength

Bending section length
Bending section circumference
Total circumference

Cyclotron frequency
Revolution time

/B;I’lax, ﬁ;nax

Dispersion, D}'**

Tunes, Q,, Qy

Slip factor, n = %/%
Momentum acceptance, (dp/p)
Horizontal acceptance [mm mrad|
RMS emittance [mm mrad], €;, €,
RMS momentum spread
Particles per bunch

RF voltage

Harmonic number, A
Synchrotron tune, Q4

Bucket height, Ap/ppucket
Bucket length

RMS bunch length, o,

95.49m
24
4 cm
20cm .
cylindrical Low risk
4.4MV/m <
4.16m
0.4m
+0.21T/m
12.5m
600 m
799.68 m
224 kHz
4.46 s
64.54m, 77.39m :
ma o Strong focusing

2.699, 2.245 <
-0.253
5.2 x 1074
4.8
0.214, 0.250
1.177 x 104
1.17 x 108
1.89kV
80
3.81 x 1073
3.77 x 1074
10m
0.994 m




The proton EDM in the AGS tunnel at BNL

g bl
-
g

Circumferen\i’;e: 800m
Max E-field: 4.5MV/m

~ -
S -

44



John Benante, Bill Morse in AGS tunnel,
plenty of room for the EDM ring.




Muon g-2 experiment

* Muon g-2 results announcement at
Fermilab, April 2021 reached >3B people.

* The collaboration developed several new
tools for systematic error probing.

* High-precision numerical integrators for
beam/spin dynamics simulations,...

* Bill Morse and Lee Roberts are the

recipients of the APS 2023 Panofsky Prize.

BNL g-2 } @
FNAL g-2 +4 O
< 4.20 >
—_— +——
Standard Model Experiment
Average

175 180 185 190 195 200 205 210 215
9
auX’IO -1165900

FIG. 4. From top to bottom: experimental values of a, from
BNL ES821, this measurement, and the combined average. The
inner tick marks indicate the statistical contribution to the total
uncertainties. The Muon g — 2 Theory Initiative recommended
value [13] for the standard model is also shown.



Muon g-2 announcement, theory vs. theory

<" Hadronic Corrections: Comparisons
* Theory :

aHVP 4+ [aQED _i_aXVeak +aHLbL]

I 0 I
HLbL a>M
a
7 K
T T T T I T T T T T |_I|VP| frlomE T | T | T T T T
LM20 I |
BMW20 —O—
ETM18/19 | @ |
Mainz/CLS19 I ® I
FHM19 i L i
; PACS19 : ® =
Mainz21 (+ charm-loop) —0O— | |
'T‘ not used in WP20 RBC/UKQCD18 | : 1 ! '
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff BMW17 . ® |
RBC/UKQCD19 | ® | RBC/UKQCD E
(+ charm-loop) data/lattice A S
WP20 data-driven - BDJ19 L £
dispersive J17 I T 3
e I ] SE— E—— € | _notusedinWP20 |
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DHMZ19 - §
Lo g
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Yannis K. Semertzidis, IBS-CAPP and KAIST 47
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Bill Morse, Lee Roberts 2023 Panofsky Prize

* We built the largest single diameter (15m) superconducting magnet coil at
the time. Moved it across the country to repeat the experiment.

BNLg2 —+— o

FNAL -2 +—@—

e Uniformity of B-field (1.5T) in cross-section to better than 10-° measured < 12 )
it (absolute) to better than 107 calibrated with two independent methods - —e——t

Standard Model Experiment

* Developed a trolley system measuring the B-field in situ (>5000 points)

175 180 185 190 195 200 205 210 215
9
aMX1O -1165900

* Introduced a new DC inflector with innovative B-field shield at 3T without

1 1 FIG. 4. From top to bottom: experimental values of a, from

belng deteCtable at Storage reglon < 1 O cm away BNL ES821, this nl:easurement, ang the combined average. The

i tick ks indicate the statistical tribution to the total

* Built a fast (200ns, 300G) magnet (kicker) without ferrite, measured the uncerainics. The Muon g2 Theory Iniiative recommended
pulsed B-field eddy currents to 108 requiring enormous dynamlc range value 131 for the standard model s also shown.

* Developed electrostatic quads with twice the CERN gradient; measured
the Electric field gradient.

* Our calorimeter detectors had to have time stability, early to late in
storage, of <20ps, measured it <2ps; gain stability to 10-*

* Used combinatorics to remove pileup pulses; segmented calo detectors
* Traceback system monitoring motion in real time, without affecting muons

* Used RF, riding on the quads, for 30 us to adjust coherent beam motion
and reduce muon losses, both by an order of magnitude

* Project manager (Chris Polly, Fermilab) received DOE management Prize ~ On time, on budget
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B111 Morse, Lee Roberts 2023 Panofsky Prize

< 200{ M -2 (FNAL I

We built the largest single diameter (15m) superconducting magnet coil at £ g 150] / -
:E} -

:

o

the time. Moved it across the country to repeat the experiment.

 Uniformity of B-field (1.5T) in cross-section to better than 10-¢ measured 2 7s
it (absolute) to better than 107 calibrated with two independent methods - P ZA-S

d DeVel()ped d tTOIIey SyStem measuring the B_ﬁeld in Situ (>SOOO pOintS) 00 e o g W ® ® N "7,‘\' D @ P
i ,\T"“"*Q'\ 3\,\ \:\aq 3\)\ ’\yg\ \\‘@\ \ya“ PQ‘ Q\}}\oe, 0\\@ o a ,\3@(\

* Introduced a new DC inflector with innovative B-field shield at 3T without °
being detectable at storage region <10 cm away

* Built a fast (200ns, 300G) magnet (kicker) without ferrite, measured the
pulsed B-field eddy currents to 10- requiring enormous dynamlc range

* Developed electrostatic quads with twice the CERN gradient; measured
the Electric field gradient.

* Our calorimeter detectors had to have time stability, early to late in
storage, of <20ps, measured it <2ps; gain stability to 10-*

* Used combinatorics to remove pileup pulses; segmented calo detectors
* Traceback system monitoring motion in real time, without affecting muons

* Used RF, riding on the quads, for 30 us to adjust coherent beam motion
and reduce muon losses, both by an order of magnitude

* Project manager (Chris Polly, Fermilab) received DOE management Prize  On time, on budget, delivered!



Summary

v'EDM physics is must do, exciting and timely, CP-violation, ~103 TeV New-
Physics reach, Unique axion physics, DM/DE. Effort similar to muon g-2.

v'Hybrid, symmetric ring lattice and spin-based alignment. Minimized systematic
error sources. Statistics and systematics of pEDM to better than 10-?e-cm.

v'Snowmass encouraged BNL to come up with a technically strong proposal for a
storage ring proton EDM. BNL is currently funding the cost estimate of the

experiment. Next, critical, do well in PS5 process. Need strong support to finish all
studies, TDR = proposal = construction.

v'Great progress in statistics and systematics promises two to three orders
improvement in sensitivity of eEDM, nEDM, uEDM, and pEDM within the
current and next decade.
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Timeline

* Snowmass/white paper, CDR, proposal/TDR, prototype/string-test, ring
construction (3-5 years), storage (2-3 years) to first publication

 Effort similar to muon g-2 experiments (under evaluation at BNL)
* Possible interesting results within a decade.
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System

Risk factor, comments

Ring construction, beam
storage, stability, IBS

Low. Strong (alternate) focusing, a ring prototype has been built (AGS
analog at BNL) 1n 60’s. Lattice elements placement specs are ordinary.
Intra-beam-scattering (IBS) OK below transition.

E-field strength

Low. Plate-units are similar to those ran at Tevatron with higher specs.

E-field plates shape

Medium. Make as flat as conveniently possible. Probe and shim out
high order fields by intentionally splitting the CR-beams (using B,)

Spin coherence time

Low. Ordinary sextupoles will provide >10s.

Beam position monitors
(BPM), SQUID-based
BPMs.

Medium. Ordinary BPMs and hydrostatic level system (HLS) to level
the ring to better than 0.1mm; SQUID-based or more conventional
BPMs to check CR-beams split to 0.0 1 mm.

High-precision
beam/spin simulations,
efficient software

Low. Cross-checking our results routinely with independent programs
and by several teams

Polarimeter

Low. Mature technology available




Large Surface Area Electrodes

Parameter Tevatron pbar-p BNL K-pi pEDM
Separators Separators (low risk)
Length/unit 2.6m 4.5m 5X2.50m
Gap, acm, 10cm, 4cm,
E-field 7.2 MV/m 4 MV/m 4.5 MV/m
Height 0.2m 0.4m 0.2m
Number 24 2 48
Max. HV +(150-180)KV +200KV +90KV

95



RF CBO amplitude reduction (data from muon g-2 experiment)
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Hadronic Electric Dipole Moments




Input to hadronic EDM

* Theta-QCD (part of the SM)
* CP-violation sources beyond the SM

Several alternative simple systems could provide invaluable
complementary information (e.g. proton, neutron and 3He,
deuteron,...).
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EDMs of different systems (Marciano)
Oaco: d, z—dp=3><10'l°§ e-cm

dp(6)/dy(6)~1/3

Super-Symmetry (SUSY) model predictions:
d,=14(d,-0.25d,)+0.83¢e(d; +d;)-0.27e(d; —dy)
d,=14(d;—025d,)+0.83e(d; +d; )+0.27e(d; —dj)
d,=(d,+d,)-02e(d; +d;)—6e(d; -d)

di =087(d, —d,)+027e(d: -d) @i ~(d ~d,)/2
i =05(d, +d,)+0.83(d’ +d:) d* =(d,+d,)/2
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Ring planarity critical to control geometrical phase errors

* Numerous studies on slow ground motion in accelerators,
Hydrostatic Level System for slow ground motion studies at Fermilab.
(Part of the linear collider studies!)

* Thorough review by Vladimir Shiltsev (FNAL):
https://arxiv.org/pdf/0905.4194.pdf



https://arxiv.org/pdf/0905.4194.pdf

Tevatron Sensors on Quad

Air Line

Water line

o

In the circle is a water level
pot on a Tevatron
guadrupole

James T Volk May 2009
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HLS measurements at Fermilab

Fig.35. HLS probe on Tevatron accelerator focusing magnet.
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Micro meters

MINOS Tidal Data

Difference in two sensors 90 meters apart
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Sketch of the AGS Accumulator Ring

* It was sketched for 1.5GeV ring. Space needed: 1mX1m.

.....
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Booster-to-AGS BtA

Booster

Proposed EDM Ring

2" |nj. Line

AGS

Beam Injection points
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Sensitivity to Rule on Several New Models
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E-field plate modules: The (24) FNAL Tevatron
ES-separators ran for years with harder specs

Bea osition

|

L‘-.'
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Physics strength comparison (marciano)

From theta-QCD

System Current limit | Future goal |Neutron
[e-cm] equivalent

Neutron <1.6%xX1026 |~10428 10-28

19Hg atom | <7 x 1030  |<10-30 10-26

129Xe atom | <6 x 10-%/ ~10-2-10-31 | 10-2°-10-%/

Deuteron ~10-29 3% 1029- <

nucleus 5x 1031

Proton <2x102% |~102° 10-29

nucleus

From SUSY-like CPV
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The spin precession relative to momentum in the
plane is kept near zero. A vert. spin precession vs.
time is an indication of an EDM (d) signal.

o =0 é:c7><l7?
a dt

Yannis Semertzidis, IBS-CAPP & KAIST
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Snowmass paper on pEDM

7

ALP-EDM coupling

Signature Vertical rotation of polarization.
Setup Longitudinal initial polarization.
Sensitivity

logio(Frequency/Hz)
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_28 | ] !
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P. Graham and S. Rajendran, PRD 88, 035023 (2013)
S. Chang et al, PRD 99, 083002 (2019)
On Kim and Y. Semertzidis, PRD 104, 096006 (2021)
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EDM theory, from Snowmass process.
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Blum, Winter et al.

Figure 3-2. Flowdown diagram from the fundamental physics at high energy scales, to the Wilson
coefficients of the effective field theory, low energy parameters, and the experimental CPV observables.
Color outlines of the various boxes inidcate the different energy scales. Solid arrows between the boxes
indicate strong connection, whereas dashed arrows indicate weaker influence onto the lower lying parameter.
Experimental systems shown in red have already been used in EDM searches; those shown in black (as well

as many of those in red) are being developed for future searches. This figure was adapted from [12].
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Polarimeter analyzing power at P, is great

Analyzing power can be further optimized
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on’y

Fig 4. The angle averaged effective analyzing power as a function of the proton kinetic
energy. The magic momentum of 0.7GeV/c corresponds to 232MeV.

Concept and systematics tested with polarized beams at
KVI/The Netherlands and COSY/Germany since late 2000’s 72
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norizontal and vertical divergence (second order effects)

* They Cause a spread in the g-2 frequencies:

p 2
do =ad: +bz9y2 +c(d—j
P

» Correct by tuning plate shape/straight section length
plus fine tuning with sextupoles (current plan) or
cooling (mixing) during storage (under evaluation).
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Hybrid, symmetric lattice storage ring. Spin Coherence Time with sextupoles

Z. Omarov et al.,, PHYS. REV. D 105, 032001 (2022) i i ol
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Hybrid (magnetic and elecric) sextupoles were used to achieve long SCT.

Concept using sextupoles developed by Yuri Orlov early in 2000’s (Deuterons),
Novosibirsk 1n the 1980°s (electrons/positrons)
Confirmed with polarized Deuteron beams at COSY 1n 2010’s



