ATLAS ITK Pixel Detector An Overview

Leonardo Vannoli On behalf of the ATLAS Collaboration

Corfu Workshop on Future Accelerators – April 26, 2023

More Luminosty? Why?

The luminosity increase will expand the discovery power, in the Higgs physics too

• The Higgs coupling are measured with a precision under 12%

More Luminosty? Why?

The luminosity increase will expand the discovery power, in the Higgs physics too

- The Higgs coupling are measured with a precision under 12% → with HL-LHC few percent.
- Higgs self-coupling not observed yet
- Precision measurements will rely critically on robust performance of the tracker detector

The High-Lumi Schedule

Run 3 will finish at the end of 2025 and HL-LHC will be installed in 3 years from 2026

- Luminosity will be increased up to a factor of 7.5 to the LHC nominal luminosity value
 - Average multiple pp collisions (pile-up) will increase to $\langle \mu \rangle = 200$
- The integrated luminosity on the whole HL-LHC operative period will be 4000 fb⁻¹
 - Increased radiation damage by a factor of ~10

The Inner Tracker Upgrade

A new ATLAS Inner Tracker (ITk) to face the extreme environment of HL-LHC

- A pixel detector surrounded by a strip detector.
 - Strip: 4 layers (barrel) and 12 disks (endcaps) (see the talk of <u>Andrea Garcia Alonso</u>)
 - Pixel: 5 Layers (barrel) and many disks (endcaps)
 - With a coverage up to $|\eta| = 4$, ITk will provide at least 9 hits per tracks

1.9

13

61

165

LEONARDO VANNOLI - Corfu Workshop on Future Accelerators - April 26, 2023

 $|\eta| < 2.5$

 $|\eta| < 4$

2.0K

9.2K

92x10⁶

5.1x10⁹

The ITk Pixel Detector

Three Pixel subsectors: the replaceable Inner System, the Outer Barrel and the Outer Endcap

z [mm]

System	# layers	Sensors Types	# modules	Dimension m ²	Module Types	Total Fluence 10 ¹⁵ n _{eq} cm ⁻²
Inner System (replaceable)	2 Layers barrel + rings	3D (L0)	2600	2.4	Triplets	13 (@ 2000 fb ⁻¹)
		Planar (L1)			Quads	9.2 (@ 2000 fb ⁻¹)
Outer Barrel	3 layers + inclined rings	Planar	4772	6.94	Quads	2.3 (@ 4000 fb ⁻¹)
Outer Endcap	3 layers of rings	Planar	2344	3.64	Quads	3.1 (@ 4000 fb ⁻¹)

ITk Expected Performance

Track parameter resolutions generally improved with ITk

 Transverse impact parameter (d₀) resolution is similar (slightly improved) to the ID performances during Run2

 Longitudinal impact parameter (z₀) resolution is better than the ID performance by a factor of 2, due to the lower pixel pitch in the L0 (25x100 µm²)

Two 3D Sensors

In the L0 of ATLAS ITk pixel 3D sensors will be adopted, 25x100 and 50x50 μm^2

- 3D pixel cells will be two different sizes:
 - $\circ~~25~x~100~\mu m^2$ in the barrel
 - $\circ~~50~x~50~\mu m^2$ in the endcap
- The production of the 3D pixel sensors is done by to 3 different foundries
 - $\circ~$ FBK (Italy) e SINTEF (Norway) 50 x 50 μm^2
 - CNM (Spain) 25 x 100 µm² (FBK as backup)
- The pre-production is almost concluded for the three vendors:
 - FBK: 50 x 50 µm² (Summer 2021), 25 x 100 µm² (summer 2022)
 - SINTEF: 50 x 50 µm² (February 2022)
 - $\circ~$ CNM: 25 x 100 μm^2 (March 2023), under test

A Single Readout Front-End

The chip ITkPix will be used on the whole ITk pixel subsystem

- Developed by RD53 Community
 - The Chip building blocks are in common by CMS and ATLAS, with slightly differences.
 - ITkPixV1.1 is the ITk pre-production chip
 - ITkPixV2 was submitted last March, will be equipped on modules from 2024
- The ITkPix main feature:
 - 65 nm CMOS, 2x2cm² area
 - 384 x 400 pixels (50 x 50 μm²)
 - Power: 0.56 W/cm²
 - Rad-hard > 1 Grad
 - Threshold: 1000e ($\sigma = 30e$)
 - Noise: 40e

The ITk Pixel Modules

The Module is: Sensor + ASIC + Flex circuit

Ring triplet module

Barrel triplet flex

- Sensor + ASICS: bare module via Hybridization at external vendor.
- Bare module + Flex circuit: module via assembly at ITk institutes.
- The module configurations:
 - Quad module: one large single planar sensor bump bonded to four front-ends.
 - Triplet module: three single-chip and 3D sensor modules connected to one flex for the first layer only
- Good process in prototyping and pre-production hybridization phases:
 - HPK: 20 prototypes
 - IZM: 50 prototypes from 3D FBK and Sintef and HPK sensors
 - Leonardo: firsts 3D 25x100 µm² already delivered
- Production will start in 2024, ~9000 modules in 2 years in 20 assembly sites:
 - Sites Qualification: about 20-25 institutes located over the world are currently qualifying for the procedures of module assembly and test.

The Pre-production Modules Characterization

8 Single Chip Cards assembled with pre-production FBK 3D sensors and chip ITkPixV1.1 in Genova

- 4 modules are tested in beam line:
 - 2 tested before irradiation to PS and SPS
 - 2 tested after irradiation:
 - Irradiated at Bonn to 1x10¹⁶n_{eq}/cm⁻²
 - Re-Irradiated at IRRAD (CERN) up to 1.9 x 10¹⁶ n_{eq}/cm²
 - The modules were tested at SPS

Sensor #	TB facility pre-irradiation	Irradiated at	Fluence	TB facility Post-irradiation	Note
W12-G (SCC2)	CERN PS & SPS	IRRAD	up to 1.7 x 10 ¹⁶ n _{eq} /cm ²	-	FE damaged
W12-M (SCC3)		Bonn + IRRAD	up to 1.9 x 10 ¹⁶ n _{eq} /cm ²	SPS	
W12-N (SCC4)	CERN PS & SPS				Used as RF
W12-J (SCC5)		Bonn + IRRAD	up to 1.9 x 10 ¹⁶ n _{eq} /cm ²	SPS	

Sensors Test and Efficiency

Not-irradiated pre-production module with FBK 3D sensors and chip ITkPixV1.1

- PS: proton beam at 12 GeV
- SPS: pion beam at 120 GeV
- The modules were placed perpendicularly to the beam
 - Ave. Efficiency = $98.7 \pm 0.1\%$ at 0 V bias
 - Ave. Efficiency = $98.9 \pm 0.1\%$ at 10 V bias
- Results are compatible with the results obtained with RD53A prototype (FBK 3D sensor 50x50 μm^2) at DESY

- Local Efficiency of single pixel cell:
 - In the central area: efficiency over 99%
 - On the corners the efficiency is lower (~75%)
 because of the p⁺ columns implanted there

LEONARDO VANNOLI - Corfu Workshop on Future Accelerators - April 26, 2023

Sensors Test and Efficiency

Post-irradiation pre-production module with FBK 3D sensors and chip ITkPixV1.1

- Modules irradiated at Bonn:
 - Uniform fluence $\phi = 1 \times 10^{16} n_{eq}/cm^2$
 - Modules were tested perpendicularly ($\theta = 0^{\circ}$) and titled ($\theta = 15^{\circ}$) w.r.t. the beam
 - Ave. Efficiency > 97% a 40 V bias

LEONARDO VANNOLI - Corfu Workshop on Future Accelerators - April 26, 2023

The Local Supports

Local support prototypes using carbon fibre and carbon foam to minimize mass and maximize thermal performance

- Different geometries optimized for the various layers and regions of the pixel detectors:
 - Inner system: two layers of staves and double-sided rings in the endcaps
 - Outer Barrel: three layers of longeron and inclined rings
 - Outer Endcap: three layers of endcap rings composed by 2 half-rings (HR)

Data Transmission

- A kapton/copper flex hoses the Front-Ends
- The PPO, a ZIF cable, is connected to the flex
- Over 6 meter custom Twinax Cable transmits data via electrical signal
- Via a FireFly connector the Twinax is connected to the Optoboard. The board houses 4 Gigabit Reciver Chips, one for each LpGBT and a VTRx+ chip to aggregate and convert electrical signal to optical
- The optical signal goes out from the detector to FELIX, the off detector board.

Data Transmission

- To reduce material the links are shared on all layers:
 - Readout from FE-chip at 1.28 Gb/s with up to 4 links per chip depending on position in pixel system
 - Data links are up to 6 per IpGBT coming from 1-6 modules depending on detector region to share a single 10.24 Gb/s long data fiber per IpGBT
 - CMD links (down-link) are one 2.56 Gb/s link per lpGBT fanout out to 1-6 modules depending on detector region
- The system test with its final components will be presented at loaded local supports PRR, next Oct. 2024

The ITk System Test Setup At Bern

A detector-like data transmission chain functioning

- Scan of the 95% CL limit Bit Error Ratio (BER) varying the settings of the equalizer of the GBCR
- New Felix feature: Soft Error Counter
- The results are encouraging

- Optoboard vo.0
 Termination board (prot
- Termination board (prototype)
- Samtec Twinax bundle
- Outer Barrel PP0
- ITkPix V1 module with pigtail

LEONARDO VANNOLI - Corfu Workshop on Future Accelerators - April 26, 2023

Summary and Conclusion

The ATLAS ITk is an all silicon detector, composed by strips and pixel, to cope with the luminosity increasing with HL-LHC

- The main features of the ITk detector:
 - Increased acceptance up to $\eta \sim 4$
 - A number of points per track higher than 9
 - High granularity
 - Radiation hardness with minimized material budget.
- The Pixel system is finalizing an extensive prototyping phase and recently moving to pre-production and production.
 - System tests and demonstrators for all subsystems
 - Finalized production version of readout chip, services, loading and integration procedures.
 - Production will start by the end of 2024!

Status of the Project

Specification reviews and preliminary design reviews are complete

	R&D		Pre-Production	Production
Specification Review	Preliminary Design Review	Final Design Review	Production Readiness Review	Production Advancement Review
	(PDR)	(FDR)	(PRR)	(PAR)

- Completing FDR phase
 - Services, Loaded Local Supports and Global Mechanics & Integration FDRs to be completed in the next months
 - ASIC FDRs MOPS (pixel monitoring chip) and GBCR (data transmission) FDRs will be completed in the next few months
- Pre-production Phase
 - Sensors have completed pre-production except for (25x100µm2 CNM sensors)
 - Pre-production of hybridization has started with initial prototyping phase to verify designs
 - Pre-production of bare local supports is close to completion (early 2023)
- Production phase
 - FE-ASIC ITkPixV2 production will start with an engineering run in March 2023

Planar Sensors

Planar sensors pre-production is completed with about 800 quad sensors

Thickness	Pixel Pitch	Position	Vendor	Bias Structure
150 µm	50 x 50 µm²	L2-4	HPK	poly-Si
		R2-4	Micron	Punch-Through
100 µm	50 x 50 µm²	L1	Micron	Punch-Through
		R1	FBK	None

HPK test structure, Micron sensor tile

The Material Budget

Lower material budget than ATLAS ID, using:

- CO2 cooling with thin titanium pipes
- Advanced powering: serial powering for pixels
- Carbon structures for mechanical stability and mounting
- Optimise number of readout cables using data link sharing (command link sharing being considered)
- Material distribution required for performance and radiation level studies

LEONARDO VANNOLI - Corfu Workshop on Future Accelerators - April 26, 2023

The Outer Endcap HR Loading Procedure

Italian and UK sites are handling the outer endcap local support loading

- Italian sites procedure
 - PI gantry (Physik Instrumente) with x, y, z and theta stages and honeycomb optical breadboard
 - The glue is deposited on the HR by the gantry, using a disposable syringe.
 - 4 suction cups handling the module that is picked-up and placed on the local support
- UK sites procedure
 - In RAL a custom Aerotech linear motor gantry is used
 - Glue is dispensed from a syringe mounted on the gantry
 - A pick-up jig is use to pick-up the models and place on the local support
 - The loading technique at Oxford is similar to that employed by RAL
 - The gantry picks up so-called "bridge tools", with which it will lift and place modules on a halfring that stay with the positioned module until the glue cures.

Operability Window

An efficiency > 97% when the module is under the break down voltage of ~ 150 V

- The operability window is defined by high efficiency (> 97 %) and bias voltage below the breakdown:
 ~100 V to ~170 V bias
- Leakage current I ~ 150 µA/cm² and power dissipation 15 mW/cm² @ 100 V bias (scaled at -25°C) for SCC3