

Dual-Readout Calorimetry for future HEP Experiments

Andrea Pareti – INFN and Università di Pavia Workshop on Future Accelerators - 25/04/2023

Topics

Future e⁺e⁻ colliders Experimental Challenges Dual-Readout Calorimetry Current and expected results Outlook

Searches at e^+e^- colliders

Two main projects for future e^+e^- colliders: FCC at CERN, CepC (China) Energies in the Center of mass frame: [90, 160, 240, 365] GeV

Broad physics potential:

- ElectroWeak physics at Z pole and WW threshold
- Higgs precision measurements
- Direct searches for new physics
- Heavy Flavour Physics

Jet measurement benchmarks

Large W/Z/H hadronic branching ratio: High jet energy resolution is fundamental for future colliders measurements Benchmark: distinguish W and Z bosons hadronic decays through the jet invariant mass

W/Z separation = $(m_Z - m_W)/\sigma_m$

Target resolution: $\frac{\sigma}{E} = \frac{30}{\sqrt{2}}$

Andrea Pareti - INFN and Università di Pavia

Experimental Challenges

Any hadronic shower has two components Electromagnetic fraction f_{em} : fraction of primary jet energy contained in the *em* component

Calorimeter response to the *em* and *non-em* components is very different: $e/h \neq 1$

Hadronic jet reconstruction problems:

- 1. Large event-per-event fluctuations in f_{em}
- 2. f_{em} increases with energy (non-linearity)
- 3. Large event-per-event fluctuations in the invisible energy

Charged hadrons (π ,k...), nuclear fragments, neutrons, neutrinos, breakup of nuclei (invisible energy)

Idea:

Use two different physical processes to better sample each incoming object \rightarrow evaluate shower f_{em}

- Cerenkov light:
 - sensitive to relativistic particles, mostly due to the em component of the shower
- Scintillation light:
 - measure total energy deposition

The responses to hadronic and electromagnetic objects $\left(\frac{h}{e}\right)_{S}$, $\left(\frac{h}{e}\right)_{C}$ are detector-dependent parameters to be measured

$$\chi = cotg(\vartheta) = \frac{1 - (h/e)_S}{1 - (h/e)_C}$$

independent on particle type and energy

Given particle energy estimated by scintillation (S) and Cerenkov emission (C), one can correct the reconstructed energy

$$E=\frac{S-\chi C}{1-\chi}$$

Before Dual-Readout correction: Scintillation and Cerenkov independent signals do not correctly match the true energy $\frac{S}{E} \neq 1, \frac{C}{E} \neq 1$

Non-linearity of the reconstructed energy due to the f_{em} dependence on E

After Dual-Readout correction: Reconstructed energy much closer to the true one

 $\frac{S}{E}\simeq 1, \frac{C}{E}\simeq 1$

Estimating the $f_{\rm em}$ on event basis we can restore the linearity of the reconstructed energy

Proof of principle prototypes built and tested within the RD52 collaboration

IDEA Detector

2T magnetic field solenoid located between tracking and calorimeter volumes

Dual-Readout calorimeter for both EM and hadronic showers Also crystal-based DR ECAL section taken into consideration

Vertex Detector based on pixel sensors, targeting few micron resolution

 μ -RWELL MicroPattern Gas Detector stages for muon ID and momentum measurement located before and after the calorimeter

High-transparency Drift Chamber for excellent PId and spatial resolution $(\sigma_x < 100 \ \mu m)$ Momentum resolution: $\sim 0.28\%$ for 100 GeV tracks

Dual-Readout Calorimetry: How?

Drive towards highly-granular design:

- Particle Identification
- Heavy-Flavour jet tagging

IDEA detector @ FCC-ee/CepC:

Fiber-based calorimeter with single-fiber SiPM readout

Alternating rows of scintillating and Cerenkov fibers in capillary tubes of absorber material

SiPM readout

Key to achieve high-granularity Drastically improve the particle identification and the tagging of heavy-flavour object initiated jets

Lateral segmentation with 2mm capillaries Exploit timing information to also access longitudinal segmentation

Allows 3D event reconstruction and unveiling of shower sub-structures Huge number of data to deal with

 \rightarrow Particle-Flow friendly calorimeter

Pictures taken from Ko's talk

HiDRa Prototype

Demonstrate the feasibility of the DR technique in association with SiPM readout, with high-energy test beams

1 Mini-Module: 64×16 capillaries

Build a (almost) fully-containing hadron shower calorimeter: 80 mini-modules, each made of 16x64 capillaries 10 SiPM readout mini-modules, the others with PMTs

2021 Prototype

First small-scale (electromagnetic shower sized, $10 \times 10 \times 100 \text{ cm}^3$) prototype built and tested at SPS Central module M0 mounted with SiPM, modules [1..8] with PMTs

HiDRa Prototype

Baseline simulation resolution results for the HiDRa prototype Large impact of containment on hadron resolution Add new modules in simulation to evaluate full calorimeter performance

Electron resolution in [10, 100] GeV Range

₩ 0.045 HiDRa Simulation, Preliminary Results 0.04 Steel Steel: $\frac{\sigma(E)}{E} = \frac{13.88\%}{\sqrt{E}} + 0.062\%$ 0.035 0.03 0.025 0.02 0.015 _0.3 1/VE [GeV^{-1/2}] 0.1 0.15 0.2 0.25

First mini-module construction started to get acquaintance with production Similar prototype in development also by the Korean team colleagues Pion performance ~ $(2 - 2.5\%)/(\sqrt{E})$ better with brass, but steel was chosen due to lower price

Pion resolution in [10, 100] GeV Range

Conclusions

- ✓ Dual-Readout is a well understood technique, with experience in development and construction
- ✓ Test beam prototypes look promising for target resolution
- ✓ Now focus is on SiPM readout implementation

- Vigorous research activity to reach a realistic and tested proposal for a full detector at FCC/CepC
- Deep Learning implementation to unleash full potential of the Dual Readout + High Granularity combination

Long story short

Copper, 2m long, 16.2 cm wide 19 towers, 2 PMT each Sampling fraction: 2%

 $\begin{array}{l} Copper, 2 \mbox{ modules},\\ Each \mbox{ module: } 9.3 * 9.3 * 250 \mbox{ cm}^3\\ Fibers: 1024 \mbox{ S + 1024 C}, \mbox{ 8 PMT}.\\ \mbox{ Sampling fraction: } 4.5\%, \mbox{ 10 } \lambda_{int} \end{array}$

RD52 (2012) INFN Pavia

Lead, 9 modules, Each module: 9.3 * 9.3 * 250 cm³ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: 5%, 10 λ_{int}

Andrea Pareti - INFN and Università di Pavia

A few results from RD52

Andrea Pareti - INFN and Università di Pavia

SiPM readout:

Predicted position resolution for electrons in the current IDEA detector calorimeter Geant4 full-simulation

HiDRa Prototype

Baseline simulation resolution results for the HiDRa prototype

Electron resolution in [10, 100] GeV Range

First mini-module construction started to get acquaintance with production Steel was chosen as absorber material (less expensive)

Pion resolution in [10, 100] GeV Range

HiDRa Prototype

Steel Absorber, effect of increasing containment

Pion resolution in [10, 100] GeV Range

Brass absorber, expected result with full containment

Pion resolution in [10, 100] GeV Range

PFA in Fiber Calorimeter

Particle Flow Analysis: exploit outstanding tracking capability to reconstruct charged tracks in the ID. Leave calorimeter to measure neutral components

The responses to hadronic and electromagnetic objects $\left(\frac{h}{e}\right)_{S}$, $\left(\frac{h}{e}\right)_{C}$ are detector-dependent parameters to be

measured

 $\chi = cotg(\vartheta) = \frac{1-(h/e)_S}{1-(h/e)_C}$

independent on particle type and energy

Given particle energy estimated by scintillation (S) and Cerenkov emission (C), one can correct the reconstructed energy

$$E=\frac{S-\chi C}{1-\chi}$$

Estimate electromagnetic fraction:

$$f_{em} = \frac{\left(\frac{h}{e}\right)_{c} - \left(\frac{h}{e}\right)_{s}\left(\frac{C}{s}\right)}{\left(\frac{C}{s}\right)\left(1 - \left(\frac{h}{e}\right)_{s}\right) - \left(1 - \left(\frac{h}{e}\right)_{c}\right)}$$

EW Observables

Observable	Present			FCC-ee	FCC-ee
	value	\pm	error	(statistical)	(systematic)
$m_{\rm Z}~({\rm keV/c^2})$	91 186 700	±	2200	5	100
$\Gamma_{\rm Z} \; ({\rm keV})$	2 495 200	\pm	2300	8	100
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767	\pm	25	0.06	1
$\alpha_{\rm s}({\rm m_z})$ (×10 ⁴)	1196	+	30	0.1	1.6
$R_{\rm b} (\times 10^6)$	216 290	±	660	0.3	<60
$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	41 541	\pm	37	0.1	4
$N_{\nu}(\times 10^3)$	2991	\pm	7	0.005	1
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231 480	\pm	160	3	2–5
$1/lpha_{ m QED}(m m_Z)(imes 10^3)$	128 952	\pm	14	4	Small
$A_{FB}^{b,0}$ (×10 ⁴)	992	\pm	16	0.02	<1
$\mathbf{A}_{\mathrm{FB}}^{\mathrm{pol},\tau}~(\times 10^4)$	1498	\pm	49	0.15	<2
$m_{\rm W}~({\rm keV/c^2})$	803 500	±	15 000	600	300

From Gabriella Gaudio, LFC2022

