

XFITTER RELATED ACTIVITIES IN CMS AND IN THE LHEWWG1

XFITTER WORKSHOP - CERN

MAY 2ND, 2023

SIMONE AMOROSO (DESY)

INTRODUCTION

- Recent CMS results sensitive to PDFs and xFitter analyses
 - Jets, strong coupling and SMEFT, slowly adding top to the game
 - Studies with Drell-Yan (motivated by upcoming precision EW measurements)
 - Attempts at a global fit a la ATLASpdf, mainly to insure data consistency and that sufficient information is provided for reinterpretation

- Usage of xFitter in PDF related studies within the LHCEWWG1
 - Combination and PDF benchmarking for the W-mass averaging project
 - Pseudo-data and future combination of the weak mixing angle
 - PDF correlations through common pseudo-data fits

INCLUSIVE JETS AT 13 TEV

- ✤ 13 TeV inclusive jet cross-sections using 36 fb⁻¹ of data
 - Performs PDF, PDF+SMEFT analyses and strong coupling measurement
 - NNLO theory using k-factors -> New: updated to NNLO grids

CI: contact interaction operators

0.8

0.6

100

200

Ratio to

Anti- k_{T} (R = 0.7)

Tot. exp. unc.

Data (stat unc.)

1000

100 200

DETERMINATION OF PDFS AND STRONG COUPLING

- Improved gluon constraints in the "usual" HERA+X fit
- Reduction in the MHOU impact on the strong coupling using the NNLO grids

With NNLO k-factors

(HERA+CMS) / HERA 10⁻¹ х

 $\mu_{f}^{2} = m_{t}^{2}$

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1170 \pm 0.0014$ (fit) ± 0.0007 (model): \pm 0.0008 (scale) \pm 0.0001 (param.)

With NNLO grids

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1166 \pm 0.0014 \,({\rm fit}) \pm 0.0007 \,({\rm model})$ ± 0.0004 (scale) ± 0.0001 (param.)

SMEFT INTERPRETATION

- * Effect of **Contact Interactions** (CI) is then added to the fit using CIJET interface (Toni)
- Simultaneous determination of PDFs, SM parameters and Wilson coefficients
- Fit performed at NLO QCD using the inclusive jets and top-quark pair data

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{2\pi}{\Lambda^2} \sum_{n \in \{1,3,5\}} c_n O_n.$$

95% CL on Λ with $c_1 = -1$: Axial vector-like: 24 TeV Vector-like: 31 TeV Left-handed: 31 TeV

Ongoing work to go beyond CI and towards full PDF+SMEFT analyses

TRIPLE-DIFFERENTIAL DIJET CROSS-SECTIONS AT 13 TEV

2D: dijet mass in five rapidity regions $y_{max} = sign(|max(y_1, y_2)| - |min(y_1, y_2)|) max(|y_1|, |y_2|)$ **3D**: mass and average pT in bins of rapidity separation and boost of the diet system

$$=\sqrt{(E_1+E_2)^2-(\vec{p}_1+\vec{p}_2)^2}, \quad \langle p_{\rm T} \rangle_{1,2} = \frac{1}{2} \left(p_{\rm T,1} + p_{\rm T,2} \right)$$

- The dijet rapidity phase-space, highlighting the relationship between variables used for 2D and 3D measurements
- Colored triangles suggest the orientation of two jets in different phase-space regions in the lab frame

2D/3D DATA / THEORY COMPARISONS

- Data compared to predictions at NNLO QCD x NLO EW x NP
- In good agreement but for ABMP16
- Generally smaller predicted cross-sections

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-21-008/index.html

DATA/PREDICTIONS - 3D DIJETS

×

Some differences in the shape visible in the most forward y_b bins

PDFS AND STRONG COUPLING

- Results used in simultaneous PDF + strong coupling extractions ×
- Stronger PDF constraints and smaller strong coupling uncertainties with 3D data

2D: $\alpha_{\rm s}(m_{\rm Z}) = 0.1201 \pm 0.0012$ (fit) ± 0.0008 (scale) ± 0.0008 (model) ± 0.0005 (param.) $= 0.1201 \pm 0.0021$ (total),

3D: $\alpha_{\rm s}(m_{\rm Z}) = 0.1201 \pm 0.0010$ (fit) ± 0.0005 (scale) ± 0.0008 (model) ± 0.0006 (param.) $= 0.1201 \pm 0.0020$ (total),

10

PDF CONSTRAINTS FROM TOP DATA

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-20-006/index.html

Predictions at NNLO prod. X NNLO decay (Stripper) available

Further work needed to understand how to incorporate corrections for NLO EW × and finite width effects beyond the NWA

13 TEV Z-RAPIDITY AND PDFS

Rapidity distribution of file-ton pairs with 36 fb-1 at 13 TeV

Theory: NLO grids (aMCfast) + NNLO QCD k-factors (DYTURBO) *

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-17-010/index.html

×

Good description of the data, after working out proper systematics decomposition Some issues with the most forward electron bins, likely due to "prefiring"

13 TEV W-HELICITY MEASUREMENT

Lepton direction in W-decays retains information on the W polarization state × * W rapidity and helicity are inferred statistically from lepton pT-eta distribution

CMS Simulation

13 TeV

14

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-18-012/

LEPTON PT/ETA CROSS-SECTIONS

This distribution is what is actually measured, but cannot be fitted at fixed-order

W rapidity and helicity can be inferred statistically from lepton p_T -eta distribution

W CHARGE ASYMMETRY MEASUREMENT

Helicity integrated results measured without assumptions on underlying polarization

× * Avoids the issue of circular pdf uncertainties in e.g. Tevatron W-asymmetry measurements

W HELICITY CROSS-SECTIONS

- Aim to directly fit the helicity cross-sections
- Predictions at NLO QCD obtained with aMCfast
- NNLO corrections (pending) computed with DYTURBO
- Good chi2 when using provided covariance matrices

Struggling a bit in reconstructing a nuisance parameter representation for the likelihood fit output (needed to combine with Z)

W+CHARM AND STRANGENESS

- CMS measurements of W+charm production at 8 TeV and 13 TeV
 - Charm identified through a combination of soft-muon and secondary vertex
 - Usual opposite-sign same-sign subtraction
 - Unfolded to particle- and particle-level anti-kT charm jets with R=0.4

Compared to NLO QCD theory from MCFM

- Jet definition soft unsafe starting at NNLO QCD, needs to correct the data to a calculable algorithm
- Normalized Involves large extrapolation down to charm $p_T \sim 0$

http://cms-results.web.cern.ch/cms-results/ public-results/preliminary-results/SMP-21-005/

W+CHARM AND STRANGENESS

19

Provide endorsed world average combination of hadron collider mw results

- Establish a methodology to combine present and future measurements
- Enable physics modelling updates of past measurements (i.e. PDFs, p_T^W)
- Properly correlate m_W and $\sin^2 \theta_{eff}^l$ measurements in EW fits

W-BOSON MASS AVERAGING PROJECT

COMBINATION PROCEDURE

$$m_W^{new} = m_W^{ref} - \delta m_W^{QCD} - \delta m_W^{ND}$$

published value

Improved predictions

PDF extrapolation

Correction applied in a two-step procedure: *

- 1. Correct all measurements to a common PDF/QCD
- 2. Combine them properly including correlations

m_WPDF

 δm_W^{PDF} correction to reference PDF δm_{w}^{QCD} correction to QCD modelling beyond quoted uncertainties

+ LHCb

PDF EXTRAPOLATIONS

PDF extrapolations (preliminary) shown for Tevatron p_Tlep measurements Comparing different codes to evaluate generator dependence

Generator Sample type QCD accuracy	Powheg Reweighted NLO+NLL	Powheg Direct NLO+NLL	MiNNLO Reweighted NNLO+NLL	Resbos Direct NLO+NLL
PDF set			Shift	
CTEQ6M	0	0	0	0
CTEQ66	-15.4 ± 0.8	-15.8 ± 0.8	-14.0 ± 1.3	-17.8 ± 1.0
CT10	-6.3 ± 0.8	-6.2 ± 0.8	-4.2 ± 1.3	_
CT10nnlo	-16.2 ± 0.8	-16.6 ± 0.8	-16.8 ± 1.3	_
CT14	$-4,1 \pm 0.8$	-3.9 ± 0.8	-6.8 ± 1.3	-7.1 ± 1.0
CT18	-6.2 ± 0.8	-6.6 ± 0.8	-8.5 ± 1.3	-9.4 ± 1.0
CJ15	7.7 ± 0.8	7.9 ± 0.8	10.1 ± 1.3	_
MMHT14	-6.2 ± 0.8	-6.4 ± 0.8	-6.9 ± 1.3	-8.1 ± 1.0
MSHT20	-5.0 ± 0.8	-4.9 ± 0.8	-4.9 ± 1.3	_
ABMP16	5.2 ± 0.8	5.0 ± 0.8	-0.2 ± 1.3	_
NNPDF3.1	-13.8 ± 0.8	-14.3 ± 1.4	-14.1 ± 1.3	-15.8 ± 1.0

CT18

NNPDF31

AND PDF CORRELATIONS

MSHT20

NNPDF40

- Performed a benchmarking of PDF sets against Tevatron and LHC cross-section measurements
 - Considering measurements of W and Z cross-sections from Tevatron and LHC
 - Theory predictions at NNLO QCD x NLO EW

PDF set	Chi2/ndf	PDF set
Cteq66	231/126	CT18NNLO
CT10	179/126	CT18ANNLO
NNPDF31	200/126	MSHT20
NNPDF40	195/126	ABMP16

Modern NNLO PDFs provide the best description, no set gives a χ^2 /ndf~1

Relevance of resummation corrections (Alessandro's talk on Thursday)?

Decision on the final PDF will consider χ^2 and uncertainty of the combination itself

WEAK-MIXING ANGLE (PSEUDD-)COMBINATION AND PDF CORRELATIONS

Sensitivity study towards a future combination of LHC 13 TeV weak mixing angle measurements

Consider A₄ pseudo-data from × Powheg at NLO QCD + EW accuracy

- Estimate of the *correlations between PDFs fitted by different groups*
- X

Needed to quantify differences between SM parameters extracted with different PDFs Fits to common pseudo-data for the reduced PDF4LHC21 dataset generated within xFitter

* xFitter the "go-to" choice for QCD/PDF analyses in CMS

Unique xFitter role in the LHC EW precision studies

and knowledge shared by a very restricted group of people

SUMMARY

* But, high threshold for using the code (no way without external input/help)

BACKUP

PDFs benchmarking

Dataset	NNPDF31	NNPDF40	MMHT14	MSHT20	CT18NNLO	ABMP16
CDF Z rapidity	24 28 / 28	28 30/28	30 31/28	32 32/28	27 27/28	31 31 / 28
CDF W asymmetry	11 57 / 13	14 17 / 13	12 13 / 13	28 27 / 13	11 35 / 13	21 43 / 13
D0 Z rapidity	22 22/28	23 23 / 28	23 23 / 28	24 23 / 28	22 22/28	22 22/28
D0 Wev lepton asymmetry	22 32/13	23 29 / 13	52 51/13	42 40 / 13	19 32 / 13	26 24 / 13
D0 $W\mu\nu$ lepton asymmetry	12 14 / 10	12 16 / 10	11 14 / 10	11 13 / 10	12 13 / 10	11 12 / 10
ATLAS peak CC Z rapidity	13 18 / 12	13 17 / 12	58 89/12	17 19/12	11 77 / 12	18 32/12
ATLAS W^- lepton rapidity	12 18 / 11	12 15 / 11	33 33 / 11	16 17 / 11	9.9 28 / 11	14 17 / 11
ATLAS W^+ lepton rapidity	8.9 13 / 11	8.6 11 / 11	15 21/11	12 13 / 11	9.4 16 / 11	10 12 / 11
Correlated χ^2	76 110	63 83	212 236	91 102	43 251	86 108
Log penalty χ^2	-0.62 -0.62	-0.58 -0.58	-1.62 -1.62	-2.89 -2.89	-1.68 -1.68	-2.72 -2.72
Total χ^2 / dof	200 312 /	195 242 /	445 509 /	270 283 /	163 499 /	236 300 /
	126	126	126	126	126	126
χ^2 p-value	0.00	0.00	0.00	0.00	0.02	0.00

Table 8: Goodness-of-fit for the Tevatron 1.96 TeV and ATLAS 7 TeV Z and W cros-section measurements compared to NNLO QCD + NLO EW theory predictions using different modern global PDF sets. The numbers before (after) the vertical bar "|" denote the χ^2 computed including (excluding) the PDF uncertainties. The CTEQ PDFs uncertainty corresponds to a 68% coverage, and is obtained by rescaling the eigenvectors by a factor 1/1.645.

PDFs benchmarking

Dataset	CT18ANNLO	CT18ZNNLO	CT18XNNLO	CT14nnlo	CT10nnlo	CJ15nlo
CDF Z rapidity	28 29 / 28	28 29/28	28 27 / 28	29 29 / 28	29 28 / 28	32 30/28
CDF W asymmetry	12 30 / 13	12 28 / 13	11 33 / 13	12 28 / 13	16 34 / 13	21 27 / 13
D0 Z rapidity	22 22/28	22 23 / 28	22 22/28	22 22 / 28	22 22/28	23 22 / 28
D0 Wev lepton asymmetry	21 33 / 13	21 29 / 13	21 31 / 13	20 32/13	24 69 / 13	39 49 / 13
D0 $W\mu\nu$ lepton asymmetry	11 12 / 10	11 12 / 10	11 13 / 10	11 13 / 10	11 18 / 10	17 26 / 10
ATLAS peak CC Z rapidity	10 19 / 12	9.7 21 / 12	12 71 / 12	13 42/12	12 27 / 12	60 104 / 12
ATLAS W^- lepton rapidity	10 17 / 11	10 17 / 11	13 27 / 11	11 27 / 11	10 41 / 11	23 27 / 11
ATLAS W^+ lepton rapidity	8.7 10/11	8.1 9.5 / 11	8.9 15 / 11	9.3 12/11	9.6 43 / 11	14 15 / 11
Correlated χ^2	49 113	43 113	82 230	63 175	58 198	269 314
Log penalty χ^2	-1.69 -1.69	-0.33 -0.33	-1.05 -1.05	-2.04 -2.04	-1.51 -1.51	-5.38 -5.38
Total χ^2 / dof	170 284 /	165 280 /	209 468 /	187 376 /	190 478 /	492 610 /
	126	126	126	126	126	126
χ^2 p-value	0.01	0.01	0.00	0.00	0.00	0.00

Table 9: Goodness-of-fit for the Tevatron 1.96 TeV and ATLAS 7 TeV Z and W cros-section measurements compared to NNLO QCD + NLO EW theory predictions using different global PDF sets by the CTEQ Collaboration. The numbers before (after) the vertical bar "|" denote the χ^2 computed including (excluding) the PDF uncertainties. The CTEQ PDFs uncertainty corresponds to a 68% coverage, and is obtained by rescaling the eigenvectors by a factor 1/1.645.