

New developments in the APPLfast project

xFitter External meeting | CERN, Geneva, Switzerland

Lucas Kunz (with Fazila Ahmadova, Daniel Britzger, Xuan Chen, Claire Gwenlan, Gudrun Heinrich, Alexander Yohei Huss, João Ramalho Pires, Klaus Rabbertz, Mark R. Sutton) | 04/05/2023

KARLSRUHE INSTITUTE OF TECHNOLOGY

PPL grid project

Figure by A. Huss

$$d\sigma_{pp\to X} = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_a(x_a, \alpha_s(\mu_R), \mu_F) f_b(x_b, \alpha_s(\mu_R), \mu_F) \\ \times d\hat{\sigma}_{ab\to X}(x_a, x_b, \alpha_s(\mu_R), \mu_R, \mu_F) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p$$

Motivation

Grid Technique

Phenomenology modules 1

New Interface

Phenomenology modules 2

04/05/2023

Outlook 0 2/19

Figure by A. Huss

$$d\sigma_{pp\to X} = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_a(x_a, \alpha_s(\mu_R), \mu_F) f_b(x_b, \alpha_s(\mu_R), \mu_F) \times d\hat{\sigma}_{ab\to X}(x_a, x_b, \alpha_s(\mu_R), \mu_R, \mu_F) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p$$

Motivation

Grid Technique

Phenomenology modules 1

New Interface

Phenomenology modules 2

04/05/2023

Outlook 0 3/19

Figure by A. Huss

$$d\sigma_{pp\to X} = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b \ f_a(x_a, \alpha_s(\mu_R), \mu_F) f_b(x_b, \alpha_s(\mu_R), \mu_F)$$
$$\times \ d\hat{\sigma}_{ab\to X}(x_a, x_b, \alpha_s(\mu_R), \mu_R, \mu_F) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p$$

 Motivation OO©OO
 Grid Technique OOO
 Phenomenology modules 1 OO
 New Interface OO
 Phenomenology modules 2 OOOO
 Outlook OUtlook OOOO

 Lucas Kunz – New developments in the APPLfast project
 04/05/2023
 4/19

$$d\sigma_{pp\to X} = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b \ f_a(x_a, \alpha_s(\mu_R), \mu_F) f_b(x_b, \alpha_s(\mu_R), \mu_F)$$
$$\times \ d\hat{\sigma}_{ab\to X}(x_a, x_b, \alpha_s(\mu_R), \mu_R, \mu_F) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^p$$

 Motivation OOOOO
 Grid Technique OOOOO
 Phenomenology modules 1 OOOOO
 New Interface OOOOO
 Phenomenology modules 2 OOOOO
 Outlook OOOOO

 Lucas Kunz – New developments in the APPLfast project
 04/05/2023
 5/19

Relative uncertainty of the Higgs boson production cross section [Dulat, Lazopoulos, Mistlberger '18] Higgs production uncertainty estimates for the HL-LHC [HL-LHC Working Group 2 '19]

MotivationGrid TechniquePheno0000●000000

Phenomenology modules 1

New Interface

Phenomenology modules 2

04/05/2023

Outlook 0 6/19

Grid Technique - Logic

- NNLOJET: fixed order Monte Carlo calculations
- fastNLO/APPLgrid: grid libraries
- APPLfast: interface connecting the two sides

Motivation	Grid Technique	Phenomenology modules 1	New Interface	Phenomenology modules 2	Outlook o
Lucas Kunz – New developments in the APPLfast project				04/05/2023	7/19

Grid Technique - Interpolation

- Split interval I = [a, b] into N + 1 nodes, $a = x^{[0]}$, $b = x^{[N]}$
- Partition of unity into a set of functions:

■ 1 =
$$\sum_{i=0}^{N} E_i(x) \quad \forall x \in I$$

■ $E_i(x^{[i]}) = 1 \quad \forall i \in \{0, \dots, N\}$

• \Rightarrow Functions on the interval can be approximated: $f(x) \simeq \sum_{i=0}^{N} f^{[i]} E_i(x)$ where $f^{[i]} = f(x^{[i]})$

■ ⇒ Integrals can also be approximated: $\int_a^b f(x)g(x) \, \mathrm{d}x \simeq \sum_{i=0}^N f^{[i]}g_{[i]}$ with $g_{[i]} := \int_a^b E_i(x)g(x) \, \mathrm{d}x$

Motivation 00000 Grid Technique

Phenomenology modules 1

New Interface

Phenomenology modules 2

04/05/2023

Outlook 0 8/19

Grid Technique - Interpolation

- Split interval I = [a, b] into N + 1 nodes, $a = x^{[0]}$, $b = x^{[N]}$
- Partition of unity into a set of functions:

■ 1 =
$$\sum_{i=0}^{N} E_i(x) \quad \forall x \in I$$

■ $E_i(x^{[i]}) = 1 \quad \forall i \in \{0, ..., N\}$

• \Rightarrow Functions on the interval can be approximated: $f(x) \simeq \sum_{i=0}^{N} f^{[i]} E_i(x)$ where $f^{[i]} = f(x^{[i]})$

■ ⇒ Integrals can also be approximated: $\int_a^b f(x)g(x) \, \mathrm{d}x \simeq \sum_{i=0}^N f^{[i]}g_{[i]}$ with $g_{[i]} := \int_a^b E_i(x)g(x) \, \mathrm{d}x$

Motivation 00000 Grid Technique

Phenomenology modules 1

New Interface

Phenomenology modules 2

04/05/2023

Outlook 0 8/19

Grid Technique - Interpolation

- Split interval *I* = [*a*, *b*] into
 N + 1 nodes, *a* = *x*^[0], *b* = *x*^[*N*]
- Partition of unity into a set of functions:

■ 1 =
$$\sum_{i=0}^{N} E_i(x) \quad \forall x \in I$$

■ $E_i(x^{[i]}) = 1 \quad \forall i \in \{0, ..., N\}$

• \Rightarrow Functions on the interval can be approximated: $f(x) \simeq \sum_{i=0}^{N} f^{[i]} E_i(x)$ where $f^{[i]} = f(x^{[i]})$

• \Rightarrow Integrals can also be approximated: $\int_a^b f(x)g(x) \, \mathrm{d}x \simeq \sum_{i=0}^N f^{[i]}g_{[i]}$ with $g_{[i]} := \int_a^b E_i(x)g(x) \, \mathrm{d}x$

Motivation

Grid Technique ○●○○ Phenomenology modules 1

New Interface

Phenomenology modules 2

04/05/2023

Grid Technique - Formulae

$$\mathrm{d}\hat{\sigma}_{ab\to X}(x,\alpha_s,\mu) = \sum_{k} \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^{k+r} \,\mathrm{d}\hat{\sigma}_{ab\to X}^{(k)}(x,\alpha_s,\mu)$$

Evaluation with Monte Carlo event generator:

- Fixed-order (k = 0, 1, ...) parton level calculations
- Phase-space samples (x_m, Φ_m) with weights $w_{ab \to X, m}^{(k)}$

$$\Rightarrow \sigma_{pp \to X}(x, \alpha_s, \mu) = \sum_{a, b} \sum_{k} \sum_{m=1}^{M_p} \left(\frac{\alpha_s(\mu_{R,m})}{2\pi} \right)^{k+r} \hat{\sigma}_{ab \to X, m}^{(k)}$$
$$\times w_{ab \to X, m}^{(k)} f_a(x_{a,m}, \mu_{F,m}) f_b(x_{b,m}, \mu_{F,m})$$

Motivation Grid Technique

Phenomenology modules 1

New Interface

Phenomenology modules 2

04/05/2023

Outlook 0 9/19

Grid Technique - Formulae

For pp collisions: 4 functions $E_i(x_a)$, $E_j(x_b)$, $E_v(\mu_R)$, $E_w(\mu_F)$

$$\Rightarrow \sigma_{pp \to X}(x, \alpha_s, \mu) = \sum_{i, j, v, w=0}^{N} \sum_{a, b} \sum_{k} \left(\frac{\alpha_s^{[v]}}{2\pi} \right)^{k+r} f_a^{[i, w]} f_b^{[j, w]} \times \hat{\sigma}_{ab \to X}^{(k)} [i, j, v, w]$$

with

$$\hat{\sigma}_{ab \to X}^{(k)}[i,j,v,w] := \sum_{m=1}^{M_p} E_i(x_{a,m}) E_j(x_{b,m}) E_v(\mu_{R,m}) E_w(\mu_{F,m}) \times w_{ab \to X,m}^{(k)} \hat{\sigma}_{ab \to X,m}^{(k)}$$

Motivation 00000	Grid Technique 000●	Phenomenology modules 1	New Interface O	Phenomenology modules 2	Outlook o
Lucas Kunz – New developments in the APPLfast project				04/05/2023	10/19

Phenomenology modules 1

Determination of the strong coupling constant from HERA data [Britzger, Gehrmann, Huss, Rabbertz, et al. '19]

Motivation Grid Technique Phenomenology modules 1 .

New Interface

Phenomenology modules 2

04/05/2023

Outlook 11/19

Phenomenology modules 1

Comparison of the total jet cross section using different PDFs [Britzger, Gehrmann, Huss, Rabbertz, et al. '22]

Motivation 00000	Grid Technique	Phenomenology modules 1	New Interface	Phenomenology modules 2	Outlook o
Lucas Kunz – N	ew developments in the	APPLfast project		04/05/2023	12/19

New Interface

- Interface adapted to use modules 2 of NNLOJET
 - better colour sampling
 - full colour dijet code
 - printout of intermediate results during production step \Rightarrow workflow can better detect problematic phase space points
 - more flexible decomposition of logarithmic scale coefficients
 - \Rightarrow no need for "magical numbers" in scale setup any more

muf	1.0 * mll	mur =	1.0 * mll
muf	0.5 * mll	mur =	0.5 * mll
muf	2.0 * mll	mur =	2.0 * mll
muf	1.0 * mll	mur =	0.5 * mll
muf	0.5 * mll	mur =	1.0 * mll
muf	1.0 * mll	mur =	2.0 * mll
muf	2.0 * mll	mur =	1.0 * mll
muf	m11	mur =	mll
muf	90.0171313005	mur =	90.0171313005
muf	54.5981500331	mur =	54.5981500331
muf	148.4131591026	mur =	148.4131591026
muf	54.5981500331	mur =	90.0171313005
muf	90.0171313005	mur =	54.5981500331
muf	148.4131591026	mur =	90.0171313005

Grid Technique

Phenomenology modules 1

New Interface

Phenomenology modules 2

Lucas Kunz - New developments in the APPLfast project

04/05/2023

13/19

Phenomenology modules 2 - dijet fc

• Two different dijet full colour data sets produced (so far):

- CMS at 7 TeV, anti-kt, R=0.6
- double differential in $m_{12} \in [260.0, 5040.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- ATLAS at 13 TeV, anti-kt, R=0.4
- double differential in $m_{12} \in [260.0, 9066.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- lacksquare \Rightarrow plots shown on the following slides

Phenomenology modules 2 - dijet fc

• Two different dijet full colour data sets produced (so far):

- CMS at 7 TeV, anti-kt, R=0.6
- double differential in $m_{12} \in [260.0, 5040.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- ATLAS at 13 TeV, anti-kt, R=0.4
- double differential in $m_{12} \in [260.0, 9066.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- \Rightarrow plots shown on the following slides

Motivation 00000 Grid Technique F

Phenomenology modules 1

New Interface

Phenomenology modules 2 •0000 Outlook

Lucas Kunz - New developments in the APPLfast project

04/05/2023

14/19

Phenomenology modules 2 - dijet fc

• Two different dijet full colour data sets produced (so far):

- CMS at 7 TeV, anti-kt, R=0.6
- double differential in $m_{12} \in [260.0, 5040.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- ATLAS at 13 TeV, anti-kt, R=0.4
- double differential in $m_{12} \in [260.0, 9066.0]$ and $y^* \in [0.0, 3.0]$
- PDF set: NNPDF31 nnlo as 0118
- $\blacksquare \Rightarrow$ plots shown on the following slides

Phenomenology modules 2 - channels

Plot of relative contributions of different channels shows large cancellations between real and virtual parts for higher y^*

Motivation	Grid Technique	Phenomenology modules 1	New Interface	Phenomenology modules 2	Outlook o
Lucas Kunz – I	New developments in the	04/05/2023	15/19		

Phenomenology modules 2 - closure

Overall we find good closure at sub-permille accuracy

Motivation	Grid Technique	Phenomenology modules 1	New Interface	Phenomenology modules 2	Outlook O
Lucas Kunz – New developments in the APPLfast project				04/05/2023	16/19

Phenomenology modules 2 - closure

Even the most problematic channels (double real) show nice behaviour

Motivation 00000	Grid Technique	Phenomenology modules 1	New Interface O	Phenomenology modules 2	Outlook o
Lucas Kunz – New developments in the APPLfast project				04/05/2023	17/19

Phenomenology modules 2 - runtimes

	<mark>Event</mark>	<mark>Jobs</mark>	<mark>neval</mark>	<mark>Tot Time</mark>	Cross section	<mark>Error</mark>
LO	0.5*10 ⁹	27*8	108*10 ⁹	4.7 *10³h	5.249331E+08	1.315478E+04
V	8*10 ⁶	28*8	1.792* 10 ⁹	3.6 *10³h	4.089646E+08	1.072727E+05
R	4*10 ⁶	84*8	5.088 *10 ⁹	22.9*10 ³ h	-3.296991E+08	2.205647E+05
	10 *10 ⁶					
vv	15*10 ⁶	55*8	6.006 *10 ⁹	4.8 *10³h	2.200059E+08	7.435571E+04
RV	0.67*10 ⁶	100*8	1.1952*10 ⁹	41.6*10 ³ h	-3.385389E+08	8.122503E+05
	1.7*106	1				
RRa	0.69*10 ⁶	300*8	1.656 *10 ⁹	116*10³h	5.278204E+07	2.521830E+06
RRb	3.75*10 ⁶	81*8	3.436 *10 ⁹	19 *10³h	2.386325E+07	1.117482E+06
	11.2*106					

Numbe evaluat	r of tions	LO 108*10 ⁹	NLO ~114.9 *10 ⁹	NLO_only ~6.9*10 ⁹	NNLO ~127.2 *10 ⁹	NNLO_only ~12.3*10 ⁹
Cross-s	ection	5.249331E+08	6.041986E+08	7.926550E+07	5.623109E+08	-4.188771E+07
error		1.315478E+04	4.835966E+05	2.452676E+05	2.886867E+06	2.876399E+06
ation 00	Grid Techr	nique Phenom	enology modules 1	New Interface O	Phenomenolog 0000●	gy modules 2

Lucas Kunz - New developments in the APPLfast project

Mot

04/05/2023

18/19

Next steps

finalize validation of NNLO code

- optimize workflow and runtime
- make sure closure works in all channels
- reproduce results in [Britzger, Gehrmann, Huss, Rabbertz, et al. '22]
- calculate di-jet differential distributions at full colour
- $\alpha_s(M_Z)$ determination from LHC data
- provide setup for further developments and calculations

Thank you for your attention!

Motivation 00000	Grid Technique	Phenomenology modules 1	New Interface	Phenomenology modules 2	Outlook ●
Lucas Kunz – New developments in the APPLfast project				04/05/2023	19/19

Example:
$$f(x) = \frac{1}{3}x^3 + x^2 - 1$$
 on the Interval $I = [-2, 2]$

Five nodes $\{-2,-1,0,1,2\}$

 Motivation 00000
 Grid Technique 00000
 Phenomenology modules 1 00
 New Interface 0
 Phenomenology modules 2 00000
 Outlook 0
 Backup 00000

 Lucas Kunz – New developments in the APPLfast project
 04/05/2023
 20/24

3

4

Example:
$$f(x) = \frac{1}{3}x^3 + x^2 - 1$$
 on the Interval $I = [-2, 2]$

Five nodes $\{-2, -1, 0, 1, 2\}$

Example:
$$f(x) = \frac{1}{3}x^3 + x^2 - 1$$
 on the Interval $I = [-2, 2]$

Nine nodes $\{-2, -1.5, \dots, 1.5, 2\}$

 Motivation
 Grid Technique
 Phenomenology modules 1
 New Interface
 Phenomenology modules 2
 Outlook
 Backup

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

 Lucas Kunz – New developments in the APPLfast project
 04/05/2023
 22/24

Fractional root mean square difference between interpolation and reference [Britzger, Gehrmann, Huss, Rabbertz, et al. '19]

 Motivation
 Grid Technique
 Phenomenology modules 1
 New Interface
 Phenomenology modules 2
 Outlook
 Backup

 Lucas Kunz - New developments in the APPLfast project
 04/05/2023
 23/24

Backup - Logarithm decomposition

Phenomenology modules 1

$$\sigma_{pp\to X}(x,\alpha_s,\mu) = \sum_{i,j,v,w=0}^{N} \sum_{a,b} \sum_{k} \left(\frac{\alpha_s^{[v]}}{2\pi}\right)^{k+r} f_a^{[i,w]} f_b^{[j,w]} \hat{\sigma}_{ab\to X}^{(k)} [i,j,v,w]$$

$$\mathrm{d}\hat{\sigma}_{ab\to X\,[i,j,v,w]}^{(k)}\left(\mu_{R}^{2},\mu_{F}^{2}\right) = \sum_{\alpha+\beta\leq k} \mathrm{d}\hat{\sigma}_{ab\to X\,[i,j,v,w]}^{(k|\alpha,\beta)} \ln^{\alpha}\left(\frac{\mu_{R}^{2}}{\mu_{0}^{2}}\right) \, \ln^{\beta}\left(\frac{\mu_{F}^{2}}{\mu_{0}^{2}}\right)$$

$$\hat{\sigma}_{ab\to X}^{(k|\alpha,\beta)}[i,j,v,w] = \sum_{m=1}^{M_p} E_i(x_{a,m}) E_j(x_{b,m}) E_v(\mu_{R,m}) E_w(\mu_{F,m}) w_{ab\to X,m}^{(k)} \hat{\sigma}_{ab\to X,m}^{(k|\alpha,\beta)}$$

Motivation

Lucas Kunz - New developments in the APPLfast project

Grid Technique

New Interface

Phenomenology modules 2 Outlook 04/05/2023

Backup 0000 24/24