Drell-Yan cross-sections with fiducial cuts

Impact of linear power corrections and q_T -resummation in PDF determinations

<u>Alessandro Guida</u>, A. Glazov, L. Aperio Bella, M. Boonekamp, R. Sadykov, S. Amoroso, S. Camarda, Y. Yermolchyk

xFitter Workshop 04/05/2023

Drell-Yan process and PDF

- Vector boson creation in hadron collisions
- Drell-Yan is the prime process for precision benchmark
- DY is predicted with high precision
 - NNLO fully differential result
 - N3LO [e.g. arXiv 2007.13313, arXiv 2107.09085, arXiv 2111.10379]
 - NLO EW
 - NNLO mixed QCDxEW
 - (E.g in arXiv:2106.11953, arXiv:2201.01754 arXiv:2203.11237)
- DY contribute to PDF knowledge
 - Accurate knowledge of PDF is fundamental part of LHC program
- Important for PDF evaluation
 - *u*-*d*-valence quark PDFs
 - $R_s = (s + \bar{s})/(\bar{u} + \bar{d})$

DY measurements at the LHC

• High precision ATLAS 7TeV W/Z cross section

- Challenges the accuracy of theoretical predictions
- Z peak accuracy at 0.5% (excluding luminosity uncert.)
- high experimental precision requires equally high theory accuracy for inclusion in QCD fits
- Difficult to describe in modern PDF fit

Ultimate goal – understand the effects of the mismatch:

- PDF fit at fixed order
- But PDF used in parton shower MC e.g. [arXiv:1406.7693]

Effort for ATLAS 7TeV started in [ATL-PHYS-PUB-2018-004]

ATLAS 7TeV W/Z measurement

ATLAS 7TeV W/Z measurement

• Fiducial volume for $W^{+/-}$ cross section

- $p_{T,\ell} > 25 \text{GeV}$
- $|\eta_{\ell}| < 2.5$
- $p_{T,\nu} > 25 \text{ GeV}$
- $m_T > 40 \text{ GeV}$
- Symmetric p_T^ℓ cut
- $|\eta_\ell|$ differential cross section
- Cross section extracted at Born level (prior final state QED radiation)

[ATLAS 1612.03016]

Drell-Yan at NNLO (QCD) -Fiducial Power Correction

NNLO (QCD) calculations (from different programs) differ at % level [arXiv 2104.02400]

- ➔ this spoils the nominal accuracy of the calculations
- The difference is shown to be connected to the **subtraction scheme...**
 - Local subtraction scheme
 - Non-local subtraction scheme (e.g. q_T -subtraction)
- ...and due to the symmetric lepton fiducial cuts [arXiv:2006.11382]
 - These induce a Linear q_T dependence of the acceptance
 - $\Phi(\mathbf{q}_{\mathrm{T}}) \Phi^{\mathrm{BORN}} \sim q_{\mathrm{T}}$
 - \rightarrow linear bias in q_T sub. Scheme

Including boson *q*_T recoil prescription the **nominal accuracy is recovered** [arXiv:2102.08039]

- Recoil prescription from resummation results
- Implemented in codes SCETlib, MATRIX [arXiv2111.1366], DYTurbo [arXiv2111.14509]

Non-local/local sub. Scheme. q_T recoil allows us to recover $O(q_T^2)$ accuracy ₆

Drell-Yan at NNLO (QCD) - q_T Resummation

Acceptance depend on small q_T values

\rightarrow Enhanced q_T/Q logarithms affect the calculation regardless of the subtraction scheme used

- Need to resum fiducial power correction to obtain a meaningful prediction
 - We explore the differences in the predictions using DYTurbo

Other approaches to the problem

- Asymmetric or Staggered cut [2106.08329] (avoid the linear power corrections)
- Defiducialization [2001.02933]

DYTurbo

- Fast Drell-Yan predictions with q_T subtraction [arXiv 1910.07049]
 - Improved reimplementation of DYNNLO + DYqT + DYRes
 - Fully differential up to N3LL' QCD [2103.0497]
 - Implements q_T recoil prescription in Fixed order prediction

We produce NNLO DY prediction with DYTurbo for the ATLAS measurement

Our setup:

q_T subtr		QCD		
(q_T^{cut}/Q	0.008	PDF set	NNPDF31nnlo
	E	W	μ_R	$m_{\ell\ell}$
	G_{μ} sc	heme	μ_F $m_{\ell\ell}$	
	m_W	80.385 GeV	Resummation	
	m_Z	91.187 GeV	μ_{Res}	:
	G_F	$1.167 \cdot 10^{-5} \text{ GeV}^{-2}$	Sudakov form factor $\exp(-g_1 k)$	
			Resummation damping	$\exp(-(k \cdot m_{\ell\ell})^2)$, $k =$

NNLO QCD Predictions with DYTurbo

Prediction for Z mass peak (other bins in backup) cross section

- q_T subtraction result
- Include linear power corrections with q_T recoil
- Include q_T resummation

Negligible statistical uncertainty, 0.1 - 0.5 per mille

NNLO QCD Predictions with DYTurbo

Prediction for $W^{+/-}$ cross section

- *q_T* subtraction result
- Include linear power corrections with q_T recoil
- Include q_T resummation

Negligible statistical uncertainty at 0.1 - 0.5 per mille

Comparison with data

Include NLO EW corrections from *ReneSANCe* [arXiv:2207.04332]

- Pure Weak
- Initial State QED Radiation
- Initial-Final QED Interference Use Kfactor applied multiplicatively

•
$$kF_{NLO(EW)} = \sigma_{NLO(EW)}^{LO(QCD)} / \sigma_{LO(EW)}^{LO(QCD)}$$

EW correction important to describe the data

• We observe: $\Delta \chi^2_{NLO(EW)} \simeq 20$

Quantitative comparison with data

- χ^2 data theory comparison
- Study performed with *xFitter* framework
- Include PDF uncertainties
- Theo. & exp. correlated uncertainty accounted with nuisance parameters b^{th} , b^{data}

$$\chi^{2}(\boldsymbol{b^{data}}, \boldsymbol{b^{th}}) = \sum_{i} \frac{\left[D_{i} - T_{i}\left(1 - \sum \gamma_{ij}^{th} b_{j}^{th} - \sum \gamma_{ij}^{data} b_{j}^{data}\right)\right]^{2}}{\Delta_{i}^{2}}$$

$$+ \sum_{j} b_{j,\,data}^{2} + \sum_{k} b_{k,th}^{2}$$
Correlated χ^{2}

We test different PDFs

- Theory points T_i obtained with PDF and NLO APPLgrid (generated with MCFM)
- NNLO QCD + NLO EW accuracy reached with *kFactors*
- NNLO QCD from DYTurbo

$$kF = \frac{\sigma_i^{NNLO(QCD) + NLO EW}}{\sigma_i^{NLO(QCD)}}$$

Reproduce ATLAS paper results
Slightly better result \rightarrow better stat of new predictions

Dataset	DYNNLO ATL. paper	DYTurbo q_T -subtr.
ATLAS W+ $ \eta_{\ell} $	10 / 11	9.4 / 11
ATLAS W- $ \eta_{\ell} $	9.0 / 11	8.2 / 11
ATLAS low mass Z $ y_{\ell\ell} $	11 / 6	11 / 6
ATLAS peak CC Z $ y_{\ell\ell} $	15 / 12	15 / 12
ATLAS peak CF Z $ y_{\ell\ell} $	10/9	9.6/9
ATLAS high mass CC Z $ y_{\ell\ell} $	6.3 / 6	6.0/6
ATLAS high mass CF Z $ y_{\ell\ell} $	5.1/6	5.2/6
Correlated χ^2	39	39
Log penalty χ^2	-4.09	-4.33
Total χ^2 / dof	102 / 61	99 / 61
χ^2 p-value	0.00	0.00

CT14nnlo 68%CL

Quantitative comparison with data

Use CT14 NNLO PDF rescaled at 68%CL

- Used in the ATLAS paper
- Does not include these data set

	CT14nnlo 68%CL		
Dataset	NNLO <i>q_T-</i> subtr.	NNLO recoil <i>q_T-</i> subtr.	NNLO+ NNLL
ATLAS W+ lepton rapidity	9.4 / 11	8.8 / 11	8.8 / 11
ATLAS W- lepton rapidity	8.2 / 11	8.7 / 11	8.2 / 11
ATLAS low mass Z rapidity	11/6	7.2 / 6 🔶	7.5/6
ATLAS peak CC Z rapidity	15 / 12	10 / 12>	7.7 / 12
ATLAS peak CF Z rapidity	9.6/9	5.3/9	6.4/9
ATLAS high mass CC Z rapidity	6.0/6	6.5/6	5.8/6
ATLAS high mass CF Z rapidity	5.2 / 6	5.6/6	5.3/6
Correlated χ^2	39	40	32
Log penalty χ^2	-4.33	-3.39	-4.20
Total χ^2 / dof	99 / 61	88 / 61	77 / 61
χ^2 p-value	0.00	0.01	0.08

Improvement of single data set χ^2

Including resummation effects reduce the total $\Delta \chi^2$ of 10(20) points

Compare to other PDF sets

		Total χ^2 (ndf=61)		
	PDF set	NNLO	NNLO	NNLO+NNLL
		$q_T { m subtr.}$	recoil q_T -subtr	
	CT10nnlo68%CL	100	85	76
PDFs NOT include	CT14nnlo68%CL	99	88	77
ATLAS 7TeV data	CT18NNLO68%CL	102	90	79
sets	MMHT14nnlo68%CL	124	99	94
	NNPDF30nnlo	139	133	111
	ABMP16_5_NNLO	124	106	92
	HERAII PDF	199	201	160
		Total χ^2 (ndf=61)		
	PDF set	NNLO	NNLO	NNLO+NNLL
PDFs include ATLAS		$q_T { m subtr.}$	recoil q_T -subtr	
7TeV data sets	CT18ANNLO68	96	84	74
	MSHT20nnlo	111	87	79
	NNPDF31	91	84	71
	NNPDF40nnlo	89	83	69
	MSHT20aN3LO	97	82	73

We always observe a reduction of the χ^2 when including q_T resummation $\Rightarrow \Delta \chi^2 \sim 20(10)$

PDF profiling

Quantify the impact of new data in PDF determination

Use the shift b_{th} to update the PDF

- Uncertainty reduction
- Shift of the central value

$$f_0' = f_0 + \sum_k \beta_{k,\text{th}}^{\min} \left(\frac{f_k^+ - f_k^-}{2} - \beta_{k,\text{th}}^{\min} \frac{f_k^+ + f_k^- - 2f_0}{2} \right)$$

Profiled PDF

- ATLAS data give strong constrain on strange PDF
 - What changes with new predictions?

PDF Fit

- Perform a fit with *xFitter*
 - HERA Data + ATLAS 7TeV DY Data
 - Use the different theories for DY data
- Same settings as ATLASWZ16 PDF fit
 - $Q_{\min}^2 > 10 \text{ GeV}^2$
 - Fit parametrization:

$$\begin{aligned} xu_{v}(x) &= A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}), \\ xd_{v}(x) &= A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ x\bar{u}(x) &= A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x) &= A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}}, \\ xg(x) &= A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ x\bar{s}(x) &= A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}}, \end{aligned}$$

PDF fit

 χ^2 Fit Results

ATLAS DY data

Dataset	NNLO	NNLO	NNLO+
	q_T -subtr.	recoil	NNLL
		q_T -subtr.	
W^+ lepton rapidity	11/11	11/11	10/11
W^- lepton rapidity	7.3/11	7.3/11	7.1/11
Low mass, Z rapidity	28/6 -	→ 17/6 -	→ 16/6
Mass peak, central Z rapidity	14/12 —	<mark>→</mark> 8.1/12 —	$\rightarrow 6.4/12$
Mass peak, forward Z rapidity	6.8/9	4.3/9	5.0/9
High mass, central Z rapidity	6.7/6	8.6/6	6.9/6
High mass, forward Z rapidity	4.1/6	4.6/6	4.3/6
HERA1+2 NCep 820	55/61	56/61	55/61
HERA1 $+2$ NCep 460	194/177	195/177	195/177
$\rm HERA1{+}2~\rm CCep$	45/39	45/39	44/39
HERA1+2 NCem	223/159	224/159	223/159
HERA1+2 CCem	62/42	64/42	63/42
HERA1 $+2$ NCep 575	187/221	188/221	188/221
HERA1 $+2$ NCep 920	353/317	353/317	352/317
Correlated χ^2	76	79	71
Log penalty χ^2	-14.07	-17.65	-15.56
Total χ^2/dof	1258/1062-	►1249/1062 <mark>-</mark>	►1232/1062
χ^2 p-value	0.00	0.00	0.00
	L		
	$\Delta \chi^2_{tot} \simeq 9$		
	$\Delta \chi_{tot}^2 \simeq 26$		

PDF Fit Fit Results – PDF Ratio

Valence quark PDF

strange quark PDF

Conclusion and Outlook

- This work is now completed
 - Paper and *kFactor* will be out in ~ 1 month timescale
- We looked at the effects of linear power corrections and resummation in the ATLAS 7TeV data set
 - Resummation improves the data-MC agreement
 - Improvement in χ^2 with all the PDF sets
 - The impact of ATLAS data don't change much when using different theories
- It is interesting to check the effect of fiducial cuts in other measurement phase space, (LHCb)
- Perform a PDF fit to wide DY datasets with coherent theory predictions
 - NNLO + EW Corrections fit
 - NNLO+NNLL + EW Corrections fit

Thanks for the attention!

BACKUP

All Z cross sections

Z peak

