

LHC projections for the measurement of the Electroweak mixing angle running

<u>Federico Vazzoler</u>, Katerina Lipka, Simone Amoroso and Alessandro Vicini, Clara Lavinia Del Pio, Fulvio Piccinini, Mauro Chiesa

xFitter external meeting, 04/05/2023

The Electroweak mixing angle

*renormalizability of the theory proved by 'tHooft (1971)

Federico Vazzoler

$\sin^2 \theta_W$ beyond LO

The following relation is valid at **tree level**

$$\sin^2 \theta_W \equiv \frac{g_1^2}{g_1^2 + g_2^2} = 1 - \frac{m_W^2}{m_Z^2}$$

When considering EW radiative corrections \rightarrow include **dependence** on **renorm. scheme** + **input param.** \rightarrow several possible definitions...

ON-SHELL RENORMALISATION

$$\sin^2 \theta_{\rm eff.}^{\ell} = \kappa_f \sin^2 \theta_W$$

EW corrections absorbed into ρ_{f} and $\kappa_{\!f}$ correction factors

$$\kappa_f \sim 1 + \rho_t / \tan^2 \theta_W$$
 and $\rho_f \sim 1 + \rho_t \propto m_t^2$

Definition used in measurements at the Z-boson peak (e.g. at colliders)

In the $\overline{\text{MS}}$ scheme \rightarrow a "running" quantity (see <u>arXiv:hep-ph/0409169v2</u>)

RUNNING COUPLING CONSTANT

 $\sin^2 \theta_W^{\overline{\text{MS}}}(q^2) \equiv \frac{4\pi \alpha_{\text{EM}}^{\text{MS}}(q^2)}{g_2^{2\overline{\text{MS}}}(q^2)}$

Can be related to the on-shell definition

$$\overline{s}_W^2(m_Z) \approx s_W^2 + c_W^2(\Delta \rho)_t$$

Federico Vazzoler

Measurements of $\sin^2\theta^f_{\rm eff}$ around the Z pole

Template fit procedure to measure $\sin^2 \theta_{\text{eff}}^f$

MC samples with different values of $\sin^2 \theta^f_{
m eff}$

Measured value = MC sample which best fit the data

Measurements of A_{FB} around the Z pole at lepton (hadron) colliders \rightarrow relative precision on $\sin^2\theta^f_{eff}$ of $0.1(0.2)\,\%$

Measurements at the LHC has already reached the same precision as the Tevatron \rightarrow expected big improvement in the nearly future:

- More statistics available (from Run 3 and HL-LHC)
- Improved analysis techniques and PDF constraining methods

arXiv:1902.05142v2

04/05/2023

Available measurements of $\sin^2 \theta_W$

Recently published a study where we investigated the **sensitivity** of **NCDY measurements** at the LHC to the **energy dependence** of the **Electroweak mixing angle**

- Full NLO-EW calculation with an EW scheme with $\sin^2 \theta_W^{\overline{\text{MS}}}(q^2)$ as input parameter
- Pseudodata used to extract expected sensitivities at the LHC Run 3 and HL-LHC scenarios
- Carefully studied relevant theoretical uncertainties (PDFs + missing HO QCD and EW terms)

Probing the weak mixing angle at high energies at the LHC and HL-LHC

Simone Amoroso^a, Mauro Chiesa^b, Clara Lavinia Del Pio^{b,c}, Katerina Lipka^{a,f}, Fulvio Piccinini^b, Federico Vazzoler^a, Alessandro Vicini^{d,e}

^aDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ^bIstituto Nazionale di Fisica Nucleare INFN, Sezione di Pavia via A. Bassi 6, Pavia, Italy

^cDipartimento di Fisica, Università di Pavia via A. Bassi 6, Pavia, Italy ^dDipartimento di Fisica, Università degli Studi di Milano via G. Celoria 16, Milano, Italy ^eIstituto Nazionale di Fisica Nucleare INFN, Sezione di Milano via G. Celoria 16, Milano, Italy ^fBergische Universität Wuppertal, Gaußstrasse 20, Wuppertal, Germany

Abstract

Measurements of neutral current Drell-Yan production at large invariant dilepton masses can be used to test the energy scale dependence (running) of the electroweak mixing angle. In this work, we make use of a novel implementation of the full next-to-leading order electroweak radiative corrections to the Drell-Yan process using the $\overline{\text{MS}}$ renormalization scheme for the electroweak mixing angle. The potential of future analyses using proton-proton collisions at $\sqrt{s} = 13.6$ TeV in the Run 3 and High-Luminosity phases of the LHC is explored. In this way, the Standard Model predictions for the $\overline{\text{MS}}$ running at TeV scales can be probed.

1. Introduction

The electroweak mixing angle, θ_W , is one of the fundamental parameters of the Standard Model (SM) of particle physics. In the electroweak (EW) SM Lagrangian it is defined as

$$\sin^2 \theta_W \equiv \frac{g_1^2}{g_1^2 + g_2^2},$$
 (1)

 $Preprint\ submitted\ to\ Physics\ Letters\ B$

February 27, 2023

arXiv:2302.10782 (submitted to PLB)

Federico Vazzoler

How

- In our work, $\mu = m_{ll}$ is used as the dynamic energy scale
- Extract the expected sensitivity to $\sin^2 \theta_W^{\overline{MS}}(\hat{m}_{ll})$ in several mass bin
- Use one billion events calculated @ NLOQCD + NLOEW (only virtual weak) with POWHEG-BOX, showered with PYTHIA8 to perform a template fit
- Used hybrid scheme $(\alpha^{\overline{MS}}(\mu), m_Z, \sin^2 \theta_W^{\overline{MS}}(\mu))$ where α and $\sin^2 \theta_W$ are running quantities while m_Z is treated as an on-shell quantity
- Templates generated by varying $\sin^2 \theta_W^{\overline{MS}}(\hat{m}_{ll}) \pm 0.01$

				4	
$\rm m_{\ell\ell}^{\rm lo}~[GeV]$	$m_{\ell\ell}^{\rm hi}~[{\rm GeV}]$	$\hat{m}_{\ell\ell} \; [\text{GeV}]$	$(lpha_{ m EM}^{\overline{ m MS}}(\hat{ m m}_{\ell\ell}))^{-1}$	$\sin^2 heta_W^{\overline{ ext{MS}}}(\hat{ ext{m}}_{\ell\ell})$	
66	116	$m_{\rm Z}$	127.951	0.23122	
116	150	133	127.838	0.23323	
150	200	175	127.752	0.23468	
200	300	250	127.544	0.23648	
300	500	400	127.269	0.23885	
500	1500	1000	126.735	0.24350	
1500	5000	3250	126.047	0.24954	

How

- The template fit is done using triple differential NCDY cross-sections:
 - The absolute differential cross section is more suitable observable w.r.t. A_{FB} for the extraction of $\sin^2 \theta_W^{\overline{\text{MS}}}(q^2)$ above m_Z (factor ~3 more sensitive, more in the backup)
 - By considering fully differential information combine the sensitivity of the absolute cross-section and ${\cal A}_{FB}$
 - Two LHC scenarios considered: Run 3 $(300\,fb^{-1})$ and HL-LHC $(3000\,fb^{-1})$
 - Selection cuts and binning choices intended to reproduce a realistic measurement scenario:

 $p_T^l > 40 \,(30) \text{ GeV \&\& } |\eta^l| < 2.5$

 m_{ll} : [116, 150, 200, 300, 500, 1500, 5000]

 y_{ll} : [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.5]

 $\cos \theta_{CS}^{ll}$: [-1.0, 0.0, 1.0]

How

The (expected) relative contribution of different sources of uncertainties to the 3D cross section (HL-LHC extrapolations)

Federico Vazzoler

9

How

Similar results for backward ($\cos \theta_{\rm CS} < 0$) events and for the $\mu\mu$ channel

11

04/05/2023

How

- 1. Pseudo-data generated using the EW parameters values at the Z peak as inputs
- 2. Templates obtained by shifting up/down the expected input value of the EW mixing angle by ± 0.01
- 3. The expected sensitivity $\delta \sin^2 \theta_W^{\overline{MS}}(m_{ll})$ extracted by fitting the pseudo-data using the xFitter fitting tool (arXiv:1410.4412) using linear approximation for $\delta \sin^2 \theta_W^{\overline{MS}}(m_{ll})$

RESULTS

Federico Vazzoler

RESULTS

Federico Vazzoler

Summary

- First projections for the measurement of the the running of $\sin^2\theta_W^{\rm MS}(\mu)$ at NLO at high masses
- NLO EW MC code with $\sin^2 \theta_W^{\overline{\text{MS}}}(\mu)$ as input parameter \rightarrow direct (and consistent) determination of this parameter at hadron colliders
- In principle possible to test the running already at the end of LHC Run 3
- Precision of few % up to ~ 3 TeV → large uncertainty due to PDFs

Backup

Forward-Backward NC DY events

Presence of vector and axial-vector couplings leads to **forward-backward asymmetry** of angular distribution of lepton pairs in DY events

16

04/05/2023

Why absolute cross sections instead of AFB

At LO the triple differential NCDY cross section can be expressed as

At high $m_{\ell\ell}$ the 3D cross section is a more suitable observable for the extraction of $\sin^2 \theta_W^{\overline{\rm MS}}(\mu)$ then A_{FB}

If we look at the logarithmic derivatives w.r.t. $\sin^2 \theta_W^{\overline{MS}}(\mu)$ at $m_{\ell\ell} = 1 \text{ TeV}$ and $\sqrt{s} = 13 \text{ TeV}$

$$\frac{\delta \frac{\mathrm{d}^{3}\sigma}{\mathrm{dm}_{\ell\ell}\mathrm{dy}_{\ell\ell}\mathrm{d}\cos\theta_{CS}}}{\frac{\mathrm{d}^{3}\sigma}{\mathrm{dm}_{\ell\ell}\mathrm{dy}_{\ell\ell}\mathrm{d}\cos\theta_{CS}}} \bigg|_{\mu=1 \text{ TeV}} \sim 0.9 \frac{\delta \sin^{2}\theta_{w}^{\overline{MS}}(\mu)}{\sin^{2}\theta_{w}^{\overline{MS}}(\mu)}$$
$$\frac{\delta A_{FB}}{A_{FB}}\bigg|_{\mu=1 \text{ TeV}} \sim 0.3 \frac{\delta \sin^{2}\theta_{w}^{\overline{MS}}(\mu)}{\sin^{2}\theta_{w}^{\overline{MS}}(\mu)}$$

Federico Vazzoler

Implementation of $\sin^2 \theta_W^{\overline{\text{MS}}}(\mu)$ in POWHEG-BOX

The energy dependence of $\sin^2 \theta_W$ has recently been implemented into POWHEG-BOX <u>Z ew BMNNPV</u>:

- Use an EW input scheme where the EW mixing angle is explicit $(\alpha(\mu), m_Z, \sin^2 \theta_W(\mu))$
- Within this "hybrid" scheme the m_Z value is renormalised to its On-Shell value while the fine structure constant and the EW mixing angle are renormalised in the \overline{MS} scheme, i.e. depend on the energy scale μ
- Predictions used in this work are obtained at an **improved LO** and at **full NLO** with $\alpha(\mu)$ and $\sin^2 \theta_W(\mu)$ as running parameters \rightarrow the matrix element of the NC DY process is expressed as:

Federico Vazzoler

Predicted running at the EIC

Federico Vazzoler

Predicted running at the LHeC

Federico Vazzoler