

SMU_®

Bézier curves and pion PDFs with xFitter

Lucas Kotz, Southern Methodist University

Collaborators: Prof. Aurore Courtoy (UNAM), Prof. Pavel Nadolsky (SMU), Prof. Fred Olness (SMU), Maximiliano Ponce-Chavez (UNAM)

Fantômas4QCD PDF Parameterization

- Fantômas4QCD (Fantômas for short) is a new module implemented into xFitter.
- The parameterization we use to calculate PDFs is called a **metamorph**.
- Metamorphs are polynomial parameterizations that can approximate a variety of functional behaviors typical for PDFs and provide an alternative to neural networks.

Metamorph and Bézier Cruves

- A metamorph utilizes a Bézier curve, a polynomial of degree N_m computed from its values at control points.
- Flexibility of these curves allow a metamorph to approximate many PDF behaviors.

P. Nadolsky

[A. Courtoy, P. Nadolsky, arXiv: 2011.10078]

Control Points and Bézier Curves

L. Kotz, xFitter External meeting

Control Points and Bézier Curves ($N_m = 2$)

Control Points and Bézier Curves ($N_m = 3$)

Bézier Curve

$$\mathcal{B}^{(N_m)}(y) = \sum_{l=0}^{N_m} C_l B_{N_m,l}(y)$$

$$B_{N_m,l}(y) \equiv \binom{N_m}{l} y^l (1-y)^{N_m-l}$$

$$\Rightarrow \mathcal{B} = \mathbf{T} \cdot \mathbf{M} \cdot \mathbf{C}$$

or $\mathbf{C} = \mathbf{M}^{-1} \cdot \mathbf{T}^{-1} \cdot \mathbf{P}$

G. Farin (2001)

Kamermans, Mike Pomax: <u>https://pomax.github.io/bezierinfo</u> the control

- $\mathcal{B}^{(N_m)}(y)$: Bézier function of N_m^{th} -degree.
- $C: N_m + 1$ vector containing Bézier coefficients.
- $B_{N_m,l}(y)$: Bernstein basis polynomial.
- *M*: A fixed $N_m + 1 \times N_m + 1$ matrix containing binomial coefficients. Determined by N_m .
- **T**: A fixed $N_m + 1 \times N_m + 1$ matrix. Determined by the positions of control points.
- $P: N_m + 1$ vector containing the values at the control points.

Performing Fits with a Metamorph

- Pseudodata are constructed by Gaussian fluctuations around the "truth" function.
- The metamorph function is fitted to the pseudata.

Performing Fits with a Metamorph

Performing Fits with a metamorph

Pseudodata The functional form of the 0.4Carrier Fantômas4QCD Metamorph parameterization is X, **1**: Control points 0.3 $^{1.5} f_{\pi}(x)$ $xf(x, Q_0^2) = f_{\text{Carrier}}(x) * f_{\text{Modulator}}(x^{\alpha_x})$ $N_m = 4, \, \alpha_x = 0.4$ where we choose $f_{\text{Modulator}}(x^{\alpha_x}) = \mathcal{B}^{(N_m)}(x^{\alpha_x}).$ 0.1 • The Modulator modifies $xf(x, Q_0^2)$ at 0 < x < 1. α_x is an x-stretching 0.0 power between 0 and 1. 0.2 0.4 0.6 8.0 0.0

Х

Performing Fits with a metamorph

Performing Fits in xFitter

- The carrier can be fixed or free to vary within xFitter.
- Fixing the carrier requires an $N_m = 0$ fit to find the parameters to base the fit.
- A free carrier allows for further flexibility to search for the absolute best fit with no constraints.
- The control points are distributed by the user.
 - At a fixed control point, the modulator is constant. Fixed control points are used e.g. to reproduce the asymptotic power laws at x-> 0 or x->1.

Implementing Fantômas into xFitter

- Written in C++.
- Implemented in xFitter-2.2.0 Future Freeze
- Implementation was easy thanks to the streamlined structure of this version.

[lkotz@login03 pdfparams]\$ ls									
ABMPgluon ABMPs	sea ABMPvalend	ce Expression Factor	Fantomas HERAPDF	NegativeGluon Normalized	Normalized_exp PolySqrt				
[lkotz@login03 pdfparams]\$ ls Fantomas/									
adxmoment.h	fantomas.cc	fantomas.h~	Fantomas_PdfParam.h	LUPinverse.h	metamorph.h				
cl2DArray.h	fantomas.cc~	Fantomas_PdfParam.cc	integral.h	MetamorphCollection.h	metamorph.h~				
CMakeLists.txt	fantomas.h	Fantomas_PdfParam.cc~	isNumber.h	MetamorphCollection.h~					

Pion PDF Uncertainties

- The pion structure is related to properties of QCD at low energy. Nonperturbative methods can be used to describe it in terms of quarks and gluons.
- On the phenomenological point of view, the pion PDF has been extracted from data.
- Pion-nucleus Drell-Yan data is already implemented in xFitter. We use the pion PDF fit by Novikov et al., arXiv:2002.02902 as the baseline.
- The modulator is chosen to be $1 + \mathcal{B}^{(N_m)}(x)$.

Datapoints used in fits

- NA10 & E615: Covers the main kinematic region of x > 0.2 and Q² > 10 GeV². Constrains valence very well.
- WA70: Provides some sensitivity to the gluon PDFs that the DY data could not provide.
- HERAF^π₂: Constrains the sea and gluon PDFs at low x.

Drell-Yan only Analysis with $N_m = 0$

• The normalization differs between the two parameterizations.

• xFitter:
$$xf(x) = \frac{A_f}{B(B_f+1,C_f+1)} x^{B_f} (1-x)^{C_f}$$

• Fantômas:
$$xf_{\text{meta}}(x) = A'_f x^{B_f + \delta B_f} (1-x)^{C_f + \delta C_f}$$

- The Fantômas normalization is an independent parameter that is either fitted or computed using the sum rules.
- Free B_s is compatible with zero (0.5 ± 0.8) . Fix Bs = 0.47 to achieve stable Hessian matrix diagonalization. [*xFitter Developers' team (2020),* arXiv: <u>2002.02902</u>].

PRELIMINARY

Drell-Yan only Analysis

 The sea and gluon PDFs are not well determined even with the Nm=0 parametrization. Need to add data sets to resolve the gluon -- quark sea degeneracy at x < 0.1.

Drell-Yan only Analysis – Momentum Fractions

• The momentum fractions for sea and gluon span a broad range.

Leading-neutron data in DIS

• H1 analysis [Aaron et al, Eur. Phys. J. C, 68, 2010] identifies the single-pion production to be valid around the range $0.68 < x_L < 0.77$ at low p_T of order $p_T = 0.2$ GeV -- LN production could be used to extract the pion PDF in that range.

$$F_2^{LN(3)}(Q^2, x, x_L) = 2 f_{\pi N}(1 - x_L) F_2^{\pi}(x_{\pi}, Q^2)$$

• We implement $F_2^{\pi}(x_{\pi}, Q^2)$ according to the flux prescription based on the light-cone representation of H.Holtmann et al., Phys.Lett.B338, 363(1994)

$$f_{\pi N}(x_L = 0.73) \simeq 0.13 \pm 0.04$$

Fantômas Pion PDFs (DY+LN)

- We performed several fits with varying N_m values and control points.
- The resulting error sets were combined using the META PDF method (J. Gao, P. Nadolsky, JHEP 07 2014).
- All fits were performed at the NLO in α_s .
- Valence is well determined at large x.

Fantômas Pion PDFs (DY+LN)

- We performed several fits with varying N_m values and control points.
- The resulting error sets were combined using the META PDF method (J. Gao, P. Nadolsky, JHEP 07 2014).
- All fits were performed at the NLO in α_s .
- The gluon PDF is not well determined at x < 0.2 with just DY data.
- Inclusion of the LN data helps the lack of data from DY for x < 0.05.

Fantômas Pion PDFs (DY+LN)

- We performed several fits with varying N_m values and control points.
- The resulting error sets were combined using the META PDF method (J. Gao, P. Nadolsky, JHEP 07 2014).
- All fits were performed at the NLO in α_s .
- Similarly, the sea is not well determined at x < 0.2 with just DY data.
- Inclusion of the LN data helps the lack of data from DY for x < 0.05.

Fantômas Pion PDFs - Momentum Fraction (DY+LN)

- Momentum fractions for sea and gluon narrow with the inclusion of LN data.
- The inclusion of the LN data does not change the momentum fractions much.
- Momentum fractions agree with the quoted values from xFitter and JAM21 [JAM Collaboration (2021), arXiv: 2108.05822].

Comparison with other pion PDFs

Conclusion

- Bézier curves are polynomial interpolations that approximate a variety of functional behaviors typical for PDFs.
- The flexibility of Bézier curves allow metamorph to take on a variety of functional forms, allowing them to parameterize numerous distribution functions.
- Because Bézier curves are a less rigid parameterization, it allow them to extensively explore PDF uncertainties at both high and low-x regions.

Extra Slides

Modulator

Parameter Table for Toy Fit

	Estimate	Standard Error	t-Statistic	P-Value
da0	-0.705153	0.156905	-4.49414	0.000319731
da1	-0.575125	0.140292	-4.0995	0.000747529
da2	0.321579	0.439633	0.731472	0.474454
db1	0.092065	0.244706	0.376228	0.711402
db2	0.930947	0.326039	2.85532	0.0109504
db3	0.698893	0.240317	2.90821	0.0097906

$$f_{\text{Carrier}}(x) = (1 + \text{da0})x^{0 + \text{da1}}(1 - x)^{3 + \text{da2}}$$

$$P_i = f_{\text{Carrier}}(x_i) + \text{dbi}$$

 $\chi^2 = 36.6$

Exclusion of DY data

DY and DY+LN Valence momentum distribution (PRELIMINARY)

DY and DY+LN sea momentum distribution (PRELIMINARY)

DY and DY+LN Gluon momentum distribution (PRELIMINARY)

Enforcing Positivity

• A more general expression for metamorph is

$$xf(x) = f_{\text{Carrier}}(x) * F(\mathcal{B}^{(N_m)}(y)).$$

• where F(x) is some function that is always positive. • i.e. $F(\mathcal{B}^{(N_m)}(y)) = e^{a * \mathcal{B}^{(N_m)}(y)}$ where *a* is a constant.