PDFs at N³LO in APFEL++

Valerio Bertone

IRFU, CEA, Université Paris-Saclay

May 3, 2023, xFitter external meeting, CERN

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

Evolution for N³LO

- A fundamental ingredient to use N³LO computations in extractions of PDFs is the **evolution** accurate to the same order.
- The main ingredients to achieve N³LO accuracy in PDF evolution are:
 - the $O(\alpha_s^4)$ contribution to the anomalous dimensions, *i.e.* $\beta_3(n_f)$ and $P^{(3)}(x, n_f)$,
 - $\mathbf{\mathcal{B}}_{3}(\mathbf{n}_{f})$ was computed long ago [van Ritbergen, Vermaseren, Larin, hep-ph/9701390].
 - The **non-singlet** component of $P^{(3)}(x, n_f)$ exact in the planar limit has been computed relatively recently [Moch et al., arXiv:1707.08315].
 - When a variable-flavour number scheme is used, **matching conditions** for the evolution of α_s and PDFs accurate to $O(\alpha_s^3)$ are also necessary.
 - $O(\alpha_s^3)$ matching conditions for α_s are known (see *e.g.* [Chetyrkin *et al.*, hep-ph/0004189]).
 - Matching conditions for PDFs fully known only up to $O(\alpha_s^2)$ (in fact, matching conditions involving a heavy quark in the initial state are known to $O(\alpha_s)$).

Evolution for N³LO

- Recently the MSHT group has carried out a determination of PDFs at approximated N³LO [arXiv:2207.04739]
- The authors also released the relevant missing ingredients to perform approximated N³LO in the VFNS:
 - The **singlet** components of $P^{(3)}(x, n_f)$ and $O(\alpha_s^3)$ matching functions parameterised and fitted to the first known Mellin moments.
 - **Uncertainty** to gauge the accuracy of the parameterisations also provided.
 - A fortran code with the expressions released at: <u>https://github.com/</u> <u>MSHTPDF/N3LO_additions</u>
- All the *currently known* ingredients necessary for PDF evolution at N³LO are implemented in APFEL++. [https://github.com/vbertone/apfelxx]

The PDFs

The strong coupling

The (valence) PDFs

The (valence) PDFs

The (valence) PDFs

The parton luminosities

The matching conditions

The matching conditions

- N³LO corrections to the DIS structure functions in the zero-mass scheme are known since quite long:
 - hep-ph/0209100,
 - é hep-ph/0504242,
 - j hep-ph/0411112,
 - é hep-ph/0608307.
- Again the *currently known* ingredients necessary for computing structure functions to N³LO are implemented in APFEL++.
- Presently, with the help of Alexander Karlberg, we are carrying out a benchmark of APFEL++ and HOPPET:
 - so far, neutral current F_2 and F_L (or F_1 and F_2) are in perfect agreement,
 - still working of F_3 to fix a small difference.
 - Also working on the charged-current structure functions.

 \boldsymbol{x}

27

