PDFs at N3LO in APFEL++

Valerio Bertone

IRFU, CEA, Université Paris-Saclay

May 3, 2023, xFitter external meeting, CERN

Evolution for $\mathbf{N}^{\mathbf{3}} \mathbf{L O}$

A fundamental ingredient to use $\mathrm{N}^{3} \mathrm{LO}$ computations in extractions of PDFs is the evolution accurate to the same order.

- The main ingredients to achieve $\mathrm{N}^{3} \mathrm{LO}$ accuracy in PDF evolution are:
- the $\boldsymbol{O}\left(\boldsymbol{\alpha}_{\mathrm{s}}{ }^{4}\right)$ contribution to the anomalous dimensions, i.e. $\boldsymbol{\beta}_{\mathbf{3}}\left(\boldsymbol{n}_{f}\right)$ and $\boldsymbol{P}{ }^{(3)}\left(\boldsymbol{x}, \boldsymbol{n}_{f}\right)$,
- $\boldsymbol{\beta}_{\mathbf{3}}\left(\boldsymbol{n}_{\boldsymbol{f}}\right)$ was computed long ago [van Ritbergen,Vermaseren, Larin, hep-ph/970। 390].
- The non-singlet component of $\boldsymbol{P}^{(\mathbf{3})}\left(\boldsymbol{x}, \boldsymbol{n}_{f}\right)$ exact in the planar limit has been computed relatively recently [Moch et al., arXiv:I707.08315].
- When a variable-flavour number scheme is used, matching conditions for the evolution of α_{s} and PDFs accurate to $\boldsymbol{O}\left(\boldsymbol{\alpha}_{\mathbf{s}}{ }^{\mathbf{3}}\right)$ are also necessary.
- $O\left(\alpha_{\mathrm{s}}{ }^{3}\right)$ matching conditions for α_{s} are known (see e.g. [Chetyrkin et al, hep-ph/0004।89]).
- Matching conditions for PDFs fully known only up to $O\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ (in fact, matching conditions involving a heavy quark in the initial state are known to $O\left(\alpha_{\mathrm{s}}\right)$).

Evolution for $\mathbf{N}^{\mathbf{3}} \mathbf{L O}$

- Recently the MSHT group has carried out a determination of PDFs at approximated $\mathrm{N}^{3} \mathrm{LO}$ [arXiv:2207.04739]
- The authors also released the relevant missing ingredients to perform approximated $\mathrm{N}^{3} \mathrm{LO}$ in the VFNS:
- The singlet components of $\boldsymbol{P}^{(3)}\left(\boldsymbol{x}, \boldsymbol{n}_{f}\right)$ and $\boldsymbol{O}\left(\boldsymbol{\alpha}_{s}{ }^{\mathbf{3}}\right)$ matching functions parameterised and fitted to the first known Mellin moments.
- Uncertainty to gauge the accuracy of the parameterisations also provided.
- A fortran code with the expressions released at: https://github.com/ MSHTPDF/N3LO additions

All the currently known ingredients necessary for PDF evolution at $\mathrm{N}^{3} \mathrm{LO}$ are implemented in APFEL++. [https://github.com/vbertone/apfelxx]

The strong coupling

The strong coupling

The (valence) PDFs

The (valence) PDFs

The (valence) PDFs

The parton luminosities

The matching conditions

The matching conditions
NLO evolution with $\alpha_{s}\left(M_{Z}\right)=0.118$

The matching conditions
NNLO evolution with $\alpha_{s}\left(M_{Z}\right)=0.118$

The matching conditions

The matching conditions

The matching conditions

Structure functions

- $\mathrm{N}^{3} \mathrm{LO}$ corrections to the DIS structure functions in the zero-mass scheme are known since quite long:
- hep-ph/0209100,
- hep-ph/0504242,
- hep-ph/0411112,
- hep-ph/0608307.
- Again the currently known ingredients necessary for computing structure functions to $\mathrm{N}^{3} \mathrm{LO}$ are implemented in APFEL++.
- Presently, with the help of Alexander Karlberg, we are carrying out a benchmark of APFEL++ and HOPPET:
- so far, neutral current F_{2} and F_{L} (or F_{1} and F_{2}) are in perfect agreement,
- still working of F_{3} to fix a small difference.
- Also working on the charged-current structure functions.

Structure functions

