Recent Developements on PB-TMD fits

xFitter external meeting May, 4, 2023

H. Jung, <u>S. Taheri Monfared</u>, K. Wichmann

Overview

- 1. Introduction
- 2. PB-global Fit
- 3. Changing the scale on xFitter
- 4. Contribution of soft gluons on both PDFs and TMDs
- 5. Conclusion

Parton Branching (PB) method

[Phys. Rev. D 100 (2019) no.7, 074027] [Eur.Phys.J.C 82 (2022) 8, 755] [Eur.Phys.J.C 82 (2022) 1, 36] [Phys. Lett. B 822 136700 (2021)] [JHEP 09 060 (2022)]

- Evolution of TMDs (and collinear PDFs) at LO, NLO & NNLO
- Resummation of soft gluons at LL and NLL (at NLL identical to CSS approach)
- unique feature: backward evolution fully determines the TMD shower: consistently treats perturbative and non-perturbative transverse momentum effects
- PB TMDs together with PB TMD parton shower allow very good description of measurements over wide kinematic range

PB-Fitting procedure in a nutshell

- Two angular ordered sets with different choice of scale in α_s :
- Set1: $\alpha_s(Q^2)$: identical to HERAPDF2.0
- Set2: $\alpha_s(p_t^2=Q^2(1-z)^2)$: to avoid the non-perturbative region at large $z \rightarrow Q_{cut}=1$ GeV.

TMD parametrization:

$$f_{0,b}(x, \mathbf{k_{t,0}^2}, \mu_0^2) = f_{0,b}(x, \mu_0^2) \cdot \exp(-|k_{T,0}^2|/2\sigma^2) \ \sigma^2 = q_s^2/2 \ \& \ q_s = 0.5 \ GeV$$

Fitting procedure in a nutshell:

- parameterize collinear PDF at μ_0^2
- produce PB kernels for collinear & TMD distributions to evolve them to $\mu^2 > \mu_0^2$ [Eur. Phys. J. C 74, 3082 (2014)]
- perform fits to measurements using xFitter frame to extract the initial parametrization (with collinear coefficient functions at NLO)
- store the TMDs in a grid for later use in CASCADE3 [Eur. Phys. J. C 81, no.5, 425 (2021)]
- plot collinear and TMD pdfs within TMDPLOTTER [arXiv:2103.09741]

[Phys. Rev. D 100 (2019) no.7, 074027]

S. Taheri Monfared

Recent Developments on PB method

4

DY p_T spectrum in a wide range of energies

With the PB method we are able to describe the q_t of the DY pair at different centre of mass energies and different DY masses with the same set-up. Hard process is produced with MC@NLO with corresponding collinear set.

Is there still any room for improvement? YES!

Motivation for global Fit

NuSea data studied with PB PDFs

- \rightarrow generally well described by PB-TMD + NLO calculation
- \rightarrow this deteriorates for region of highest masses

Why?

DY mass is sensitive to collinear PDFs. we enter the large-x region where the PDF used in the calculation, which are determined from fits to HERA inclusive data, are poorly constrained.

Treatment?

It can be improved by including different data sets in fits to constrain PDFs at large-x. NNPDF3.0 obtained from global fit that include NuSea data.

[Eur.Phys.J.C 80 (2020) 7]

Data samples used in mini-global fit

Dataset

HERA	HERA1+2 CCep HERA1+2 CCem HERA1+2 NCem HERA1+2 NCep 820 HERA1+2 NCep 920 HERA1+2 NCep 460 HERA1+2 NCep 575
HERA	ZEUS inclusive dijet 98-00/04-07 data H1 low Q2 inclusive jet 99-00 data ZEUS inclusive jet 96-97 data H1 normalised inclusive jets with unfolding H1 normalised dijets with unfolding H1 normalised trijets with unfolding
Tevatron	CDF Z rapidity 2010 D0 W el nu lepton asymmetry ptl 25 GeV D0 Z rapidity 2007 E866, high mass E866, mid mass E866, low mass
LHC	CMS W muon asymmetry CMS W muon asymmetry 8 TeV CMS 7 TeV Z Boson rapidity 2 CMS 7 TeV Z Boson rapidity 3 CMS 7 TeV Z Boson rapidity 4 CMS 7 TeV Z Boson rapidity 5
S. Taheri Monfared	CMS / IEV Z Boson rapidity 5 Recent De

Total number of data point : 1501

CC e+-p NC e+-p Set1 \rightarrow chi2/dof=1858/1484=1.25 Set2 \rightarrow chi2/dof=1922/1484=1.29

FastNLO jets

FastNLO ep jets normalised

NC ppbar CC ppbar

NC pp

CC pp NC pp

PDF comparison (miniglobal & HERA fits)

Full results already presented at DIS 2022

TMD comparison (miniglobal & HERA fits)

sea, x = 0.01, µ = 100 GeV gluon, x = 0.01, μ = 100 GeV $xA(x,k_{t},\mu)$ $xA(x,k,\mu)$ PR-NI O-HERAI+II-2018-set Newminialoba Newminialoba 10-10-2.2 MDplotter 2.2 TMDplotter 10^{-2} 10 1.2 1.2 1.1 1.1 10^{-1} 10^{-1} 10 10^{2} 10 10^{2} k, [GeV] k, [GeV]

Different kt behaviour obtained from collinear splitting functions + collinear pdf Difference essentially in low kt region

At small kt \rightarrow few/no resolvable emissions \rightarrow starting distribution at x plays an important role.

At large kt \rightarrow Many emissions \rightarrow no sensitivity to PDFs x-density

Does it work? Yes!

Shown PB-sets from mini-global fit were used to repeat previous studies where predictions were in general 10-20% away from measurements

Current status:

We couldn't include large-x data to set2! e.g. Fixed target DIS, EIC pseudo data

Possible reason: Mismatch between the scale used in the coefficient functions and kernels

Treatment: In PBset2 kernels $\mu_R^2 = p_t^2$. \rightarrow coefficient $\mu_R^2 = p_t^2 + Q^2$?

Scale choice in xFitter

$F_2(x,Q^2)$ at NLO/NNLO

$$F_{\lambda}(x,Q^2) = \sum_{k} f_k \otimes C_k^{\lambda} = \sum_{k} \int_{\chi}^1 \frac{d\xi}{\xi} f_k(\xi,\mu) C_k^{\lambda}\left(\frac{\chi}{\xi},\frac{Q}{\mu},\frac{m_i}{\mu},\alpha_s(\mu)\right)$$

the choice of scale is not unique, affects the accuracy of the predictions. Significant impact on the size of HO contributions

- In massless case: $\chi = x = \frac{Q^2}{2q \cdot p}$
 - Often renormalisation and factorization scales are taken: $\mu = Q$
- In massive case:
 - renormalization scale could also depend on transverse momentum of process
 - Approximate with $\hat{t} \sim Q^2$, then $p_T^2 = (1-z)\hat{t} \sim (1-z)Q^2$ with $z = \frac{x}{\xi}$
 - Set $\mu_R^2 = Q^2 + p_T^2 = Q^2 + Q^2(1-z)$
 - Integral over ξ needs to be performed numerically to have access μ_{R}

The effect of changing scale

DGLAP-Default DGLAP-Q2(1-z) chi2/ndf=1357 / 1131 chi2/ndf=1351 / 1131

set2-Default chi2/ndf=1394 / 1131 set2-Q2(1-z) chi2/ndf=1375 / 1131

The effect of changing scale

 $Q^2=3 \text{ GeV}^2$

Q²=10 GeV²

Contribution of soft gluons to both PDFs and TMDs

PB method

Parton BR approach provides angular order evolution for TMD parton densities:

$$\begin{aligned} \widetilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) &= \widetilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2})\Delta_{a}(\mu^{2},\mu_{0}^{2}) + \int \frac{d'^{2}\mu_{\perp}}{\mu_{\perp}'^{2}}\Delta_{a}(\mu^{2},\mu_{\perp}'^{2})\Theta(\mu^{2}-\mu_{\perp}'^{2})\Theta(\mu_{\perp}'^{2}-\mu_{0}^{2}) \\ &\times \sum_{b}\int_{x}^{z_{M}} \mathrm{d}z P_{ab}^{R}(z,\alpha_{s})\widetilde{\mathcal{A}}_{b}\left(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu_{\perp}'^{2}\right), \end{aligned}$$

If we integrate over the transverse momentum:

Factorizing to small and large Z regions

Sudakov form factors give the probability to evolve from one scale to another scale without resolvable branching. We introduce an intermadiate scale to divide the two regions with different treatments of the strong coupling

• The use of the dynamical resolution scale is important to reach the same sudakov form factor of the CSS formalism.

• I will show how the non-perturbative Sudakov affects both the PDF and the TMDs by allowing really soft emissions.

S. Taheri Monfared

role of soft gluons with PDFs

Red: PB-TMD (Zm~1 : Non-pert Sudakov already included)

Blue: PB-TMD with q0=1.0 GeV (No Non-pert Sudakov)

The distributions obtained from PB-NLO-2018 set2 with $z_M \rightarrow 1$ are significantly different from those applying $z_M = z_{dyn}$, illustrating the importance of soft contributions even for collinear distributions.

S. Taheri Monfared

role of soft gluons in TMDs

Red: PB-TMD, $q_s=0.5$ (Zm~1: Non-pert Sudakov)

- The non-pert sudakov allows the radiation of very soft gluons with $z_M \rightarrow 1$
- For the region $q_t < q_0 \int 0$

 $q_0 \int \alpha_s$ will become large, and a special treatment is needed: we freeze α_s for $q_t < q_0$ at $\alpha_s(q_0)$

there are still low k_{T} contributions, which come from adding vectorially all intermediate emissions

Blue: PB-TMD, $q_s = 0.0$ (Zm~1: Non-pert Sudakov + No intrinsic kt)

- Effect of the intrinsic k_{T} distribution is much reduced at large scales

Purple: PB-TMD with $q_0 = 1$ GeV, $q_s = 0$ (No Non-pert Sudakov + No intrinsic k_t)

• Emissions below $q_0=1$ GeV are not allowed S. Taheri Monfared

Summery & out look

- PB method implemented in xFitter
 - First fit with the HERA data \rightarrow extended to global fit
 - For better determition of PDF, still large-x data need to be included
- New scale is defined in xFitter: It decreases χ^2 for both DGLAP and PB fit
- The importance of the non-perturbative region, which is automatically included in the PB approach by the requirement to reproduce DGLAP, is investigated for both collinear and TMDs.

Thanks a lot