

SMEFT STUDIES WITH EIC AND LHEC DIS PSEUDO DATA

Chiara Bissolotti

Argonne National Laboratory

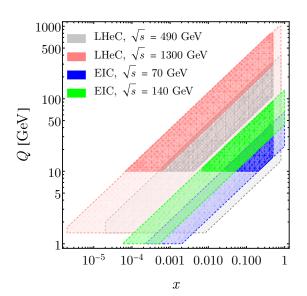
in collaboration with:

Radja Boughezal and Kaan Simsek

OUR WORK IN A NUTSHELL

ightharpoonup We study the m BSM potential of the LHeC and the EIC

detailed accounting of anticipated uncertainties on pseudo data



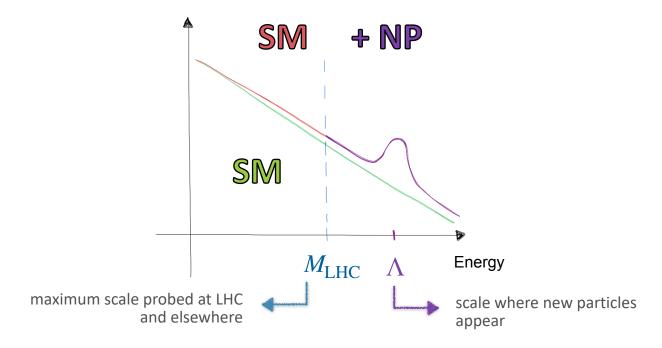
- Multidimensional fits
 - of NC DIS cross section and asymmetries performed in the **SMEFT** framework

★ We show that both the EIC and LHeC can improve upon the existing bound on the Z-boson couplings

BEFORE STARTING ...

one possibile idea could be to use xFitter to **benchmark** our findings

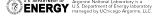
BEYOND STANDARD MODEL



All **new physics** is assumed to be heavier than all SM states and accessible collider energy

SMEFT

Standard Model Effective Field Theory



SMEFT

Standard Model Effective Field Theory

$$\mathscr{L}_{\mathrm{SMEFT}} = \mathscr{L}_{\mathrm{SM}} + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_k \mathcal{C}_k^{(n)} O_k^{(n)}$$
 in this work $n=6$

- → Patterns and correlations among operators and observables are key
- ✓ What might we find?

Best case: a non-zero value for \mathcal{C}_k

indicating a mass scale slightly above probed values

Otherwise: stringent constraints on the \mathcal{C}_k

suggest where to focus future searches

WILSON COEFFICIENTS

Dimension 6 operators

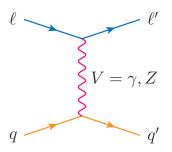
Warsaw basis

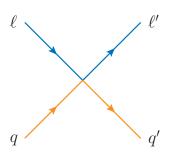
17 Wilson coefficients affect NC DIS matrix elements at LO

ffV			semi-leptonic four-fermion	
$C_{\varphi WB}$	$O_{\varphi WB} = (\varphi^{\dagger} \tau^I \varphi) W^I_{\mu\nu} B^{\mu\nu}$	$C_{\ell q}^{(1)}$	$O_{\ell q}^{(1)} = (ar{\ell} \gamma_{\mu} \ell) (ar{q} \gamma^{\mu} q)$	
$C_{arphi D}$	$O_{\varphi D} = (\varphi^{\dagger} D_{\mu} \varphi)^* (\varphi^{\dagger} D^{\mu} \varphi)$	$C_{\ell q}^{(3)}$	$(ar{\ell}\gamma_{\mu} au^I\ell)(ar{q}\gamma^{\mu} au^Iq)$	
$C_{arphi\ell}^{(1)}$	$O_{arphi\ell}^{(1)} = (arphi^\dagger i\stackrel{\leftrightarrow}{D}_\mu arphi)(ar{\ell}\gamma^\mu\ell)$	C_{eu}	$O_{eu}=(ar{e}\gamma_{\mu}e)(ar{u}\gamma^{\mu}u)$	
$C_{arphi\ell}^{(3)}$	$O_{arphi\ell}^{(3)} = (arphi^\dagger i \stackrel{\leftrightarrow}{D}_\mu au^I arphi) (ar{\ell} \gamma^\mu au^I \ell)$	C_{ed}	$O_{ed}=(ar{e}\gamma_{\mu}e)(ar{d}\gamma^{\mu}d)$	
$C_{arphi e}$	$O_{arphi e} = (arphi^\dagger i\stackrel{\leftrightarrow}{D}_\mu arphi)(ar{e}\gamma^\mu e)$	$C_{\ell u}$	$O_{\ell u} = (ar{\ell} \gamma_{\mu} \ell) (ar{u} \gamma^{\mu} u)$	
$C_{arphi q}^{(1)}$	$O^{(1)}_{arphi q} = (arphi^\dagger i\stackrel{\leftrightarrow}{D}_\mu arphi) (ar{q} \gamma^\mu q)$	$C_{\ell d}$	$O_{\ell d} = (ar{\ell} \gamma_\mu \ell) (ar{d} \gamma^\mu d)$	
$C_{arphi q}^{(3)}$	$O_{\varphi q}^{(3)} = (\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \tau^{I} \varphi)(\bar{q} \gamma^{\mu} \tau^{I} q)$	C_{qe}	$O_{qe}=(ar{q}\gamma_{\mu}q)(ar{e}\gamma^{\mu}e)$	
$C_{arphi u}$	$O_{arphi u} = (arphi^\dagger i \stackrel{\leftrightarrow}{D}_\mu arphi) (ar{u} \gamma^\mu u)$	£.0	q: left handed doublets	
$C_{arphi d}$	$O_{arphi d} = (arphi^\dagger i\stackrel{\leftrightarrow}{D}_\mu arphi)(ar{d}\gamma^\mu d)$	e, u, d: right handed singlets		
$C_{\ell\ell}$	$O_{\ell\ell} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell)$	arphi : SU(2) Higgs doublet		



DEEP INELASTIC SCATTERING



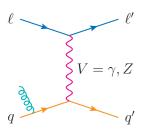


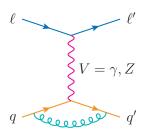
Feynman diagrams for the partonic process mediating

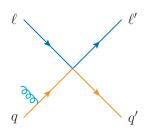
$$\ell + H \to \ell' + X$$

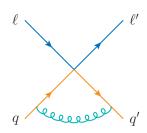
corrections modify only the quark lines

they are identical for both SM and SMEFT cross sections









SMEFT THEORY PREDICTIONS

Structure of observables

We linearize our SMEFT expressions $\,\mathcal{T}\,$

$$\mathcal{T} = \mathcal{T}^{\mathrm{SM}} + \sum_{k} \mathcal{C}_{k} \, \, \delta \mathcal{T}_{k} + \mathcal{O}(\mathcal{C}_{k}^{2})$$

k runs over the active Wilson coefficients

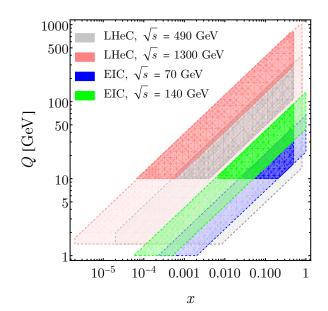
SMEFT shift associated with the Wilson coefficient C_k

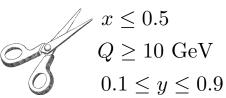
SMEFT cross section

$$\sigma = \sigma^{\text{SM}} + \sum_{i}^{N_{\text{d6}}} \frac{C_i}{\Lambda^2} k_i + \sum_{ij}^{N_{\text{d6}}} \frac{C_i C_j}{\Lambda^4} \tilde{k}_{ij} + \dots$$

KINEMATIC COVERAGE

of pseudo data





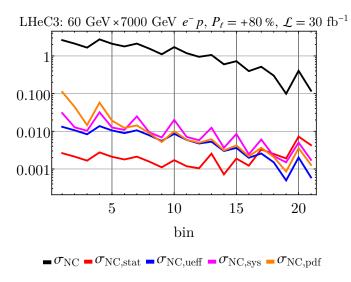
★ complementarity of LHeC and EIC

Data set label	Data set configuration	Observable		
LHeC1	$60 \text{ GeV} \times 1000 \text{ GeV } e^- p, \ P_{\ell} = 0, \ \mathcal{L} = 100 \text{ fb}^{-1}$			
m LHeC2	60 GeV × 7000 GeV e^-p , $P_\ell = -80\%$, $\mathcal{L} = 100 \text{ fb}^{-1}$			
m LHeC3	60 GeV × 7000 GeV e^-p , $P_\ell = +80\%$, $\mathcal{L} = 30 \text{ fb}^{-1}$			
${ m LHeC4}$	60 GeV × 7000 GeV e^+p , $P_\ell = +80\%$, $\mathcal{L} = 10 \text{ fb}^{-1}$	$\sigma_{ m NC}$		
m LHeC5	60 GeV × 7000 GeV e^-p , $P_{\ell} = -80\%$, $\mathcal{L} = 1000 \text{ fb}^{-1}$			
${ m LHeC6}$	60 GeV × 7000 GeV e^-p , $P_\ell = +80\%$, $\mathcal{L} = 300 \text{ fb}^{-1}$			
LHeC7	60 GeV × 7000 GeV e^+p , $P_\ell = 0\%$, $\mathcal{L} = 100 \text{ fb}^{-1}$			
D4	$10 \text{ GeV} \times 137 \text{ GeV } e^-D, \ P_{\ell} = 80\%, \ \mathcal{L} = 100 \text{ fb}^{-1}$			
D5	18 GeV × 137 GeV e^-D , $P_{\ell} = 80\%$, $\mathcal{L} = 15.4 \text{ fb}^{-1}$	$igg] A_{ m PV} = igg $		
P4	$10 \text{ GeV} \times 275 \text{ GeV } e^- p, \ P_{\ell} = 80\%, \ \mathcal{L} = 100 \text{ fb}^{-1}$]		
P5	18 GeV × 275 GeV e^-p , $P_{\ell} = 80\%$, $\mathcal{L} = 15.4 \text{ fb}^{-1}$			
$\Delta \mathrm{D4}$	The same as D4 but with $P_{\ell} = 0$ and $P_{H} = 70\%$			
$\Delta \mathrm{D5}$	The same as D5 but with $P_{\ell} = 0$ and $P_{H} = 70\%$	$igg \Delta A_{ m PV}$		
$\Delta \mathrm{P4}$				
$\Delta ext{P5}$	The same as P5 but with $P_\ell=0$ and $P_H=70\%$			

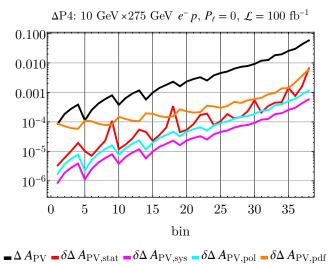
UNCERTAINTIES

bins are ordered first in Q, then in x

LHeC



EIC



NNPDF 3.1 NLO

NNPDF POL 1.1

PSEUDODATA AND χ^2

 $oldsymbol{e}$ experiment b bin

uncertainties

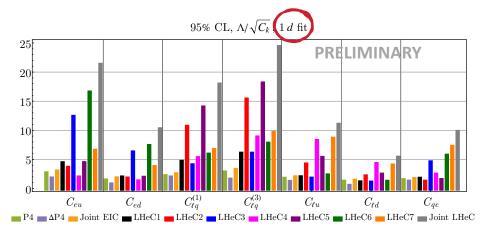
$$\mathcal{O}_{m{e},m{b}} = \mathcal{O}_{m{b}}^{ ext{SM}} + r_{m{e},m{b}} \; \delta\mathcal{O}_{ ext{unc},m{b}} + \sum_{j} r'_{j,m{e}} \; \delta\mathcal{O}_{ ext{cor}_j,m{b}}$$
 data

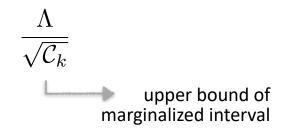
pseudodata

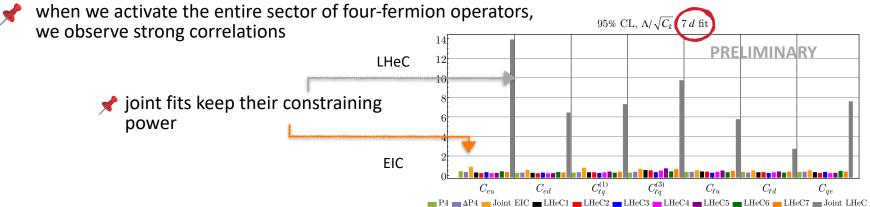
each correlated error has its own random coefficient $r'_{i,e}$

$$\chi_e^2 = \sum_{i=1}^{N_{\text{bin}}} (\mathcal{T}_i - \mathcal{O}_{e,i}) V_{ij}^{-1} (\mathcal{T}_j - \mathcal{O}_{e,j})$$

EFFECTIVE UV SCALES

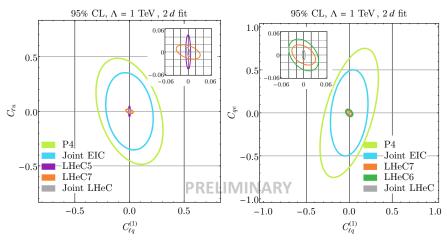






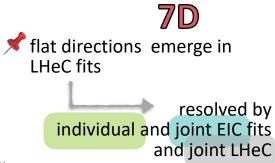
CONFIDENCE ELLIPSES

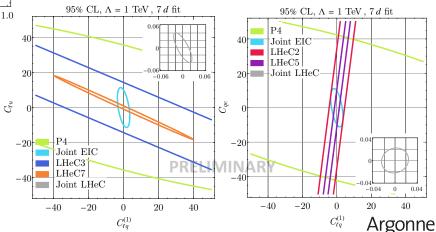
Four-fermion \mathcal{C}_k



2D

- no flat directions here
- LHeC more constraining than EIC

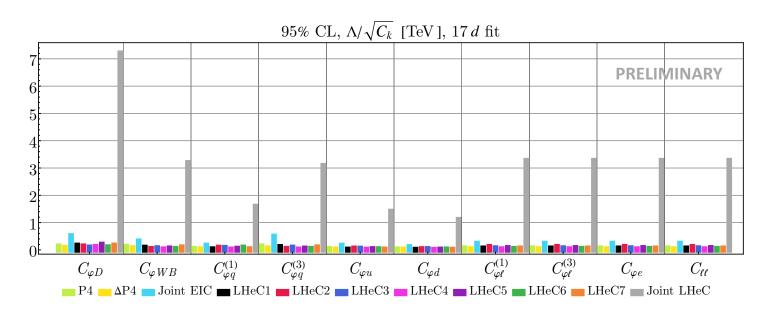




17D FIT

UV effective scales

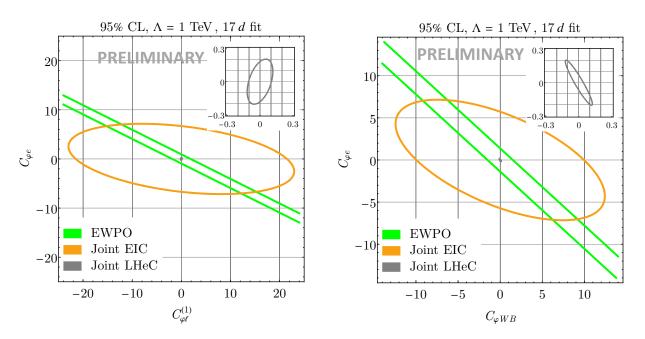
17-parameter fit on the Wilson coefficients that induce the semi-leptonic four-fermion contact interaction



very similar situation to 7D fit, joint fits have the most constraining power

17D FIT

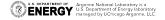
Confidence ellipses



34D EWPO fits

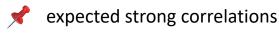
J. Ellis, M. Madigan, K. Mimasu V. Sanz, T. You JHEP04 (2021) 279

resolving blind spots observed in the fits of Wilson coefficients in the f f V sector using Z and W pole observables (EWPO) data



PRELIMINARY

joint LHeC fit



$$(\mathcal{C}_{\ell q}^{(1)}\,,\mathcal{C}_{\ell q}^{(3)})$$

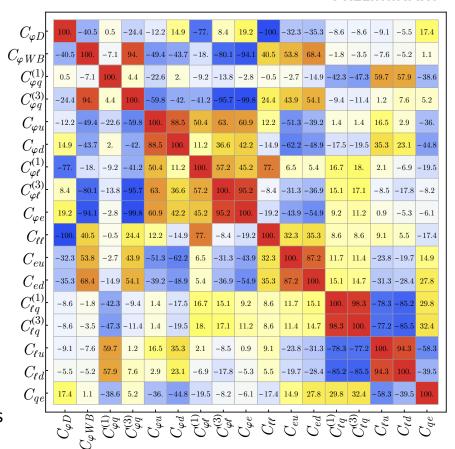
unexpected strong correlations

$$(\mathcal{C}_{\ell\ell}, \mathcal{C}_{\varphi D})$$
 $(\mathcal{C}_{\ell u}, \mathcal{C}_{\ell d})$

non trivial relation with experimental uncertainties

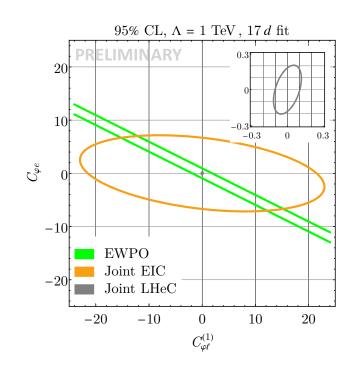


weaker bounds



CONCLUSIONS

- ✓ We performed 1D, 2D, 7D and 17D fits
 of EIC and LHeC pseudo data
- LHeC can probe scales up to 7 TeV
- (Some of) the **blind spots** observed by Ellis et al. are **resolved** by ElC and LHeC



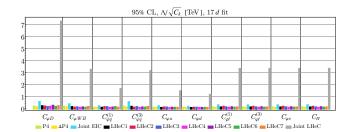
EIC and LHeC have both great potential for BSM studies

OUTLOOK

perform impact studies

growing interest in the community

see Tim's talk



OBSERVABLES

Reduced Neutral Current (NC) DIS cross section

$$\frac{\mathrm{d}^2 \sigma_{r, \text{NC}}^{\ell}}{\mathrm{d}x \, \mathrm{d}Q^2} = \left\{ \frac{2\pi\alpha^2}{xQ^4} [1 + (1-y)^2] \right\}^{-1} \frac{\mathrm{d}^2 \sigma_{\text{NC}}^{\ell}}{\mathrm{d}x \, \mathrm{d}Q^2}$$

$$\frac{d^2 \Delta \sigma_{r,NC}^{\ell}}{dx \, dQ^2} = \left\{ \frac{4\pi\alpha^2}{xQ^4} [1 + (1-y)^2] \right\}^{-1} \frac{d^2 \Delta \sigma_{NC}^{\ell}}{dx \, dQ^2}$$

Unpolarized hadron

Polarized hadron

Parity-violating (PV) DIS asymmetries

unpolarized

$$A_{\mathrm{PV}} = rac{\sigma_{\mathrm{NC}}^{+} - \sigma_{\mathrm{NC}}^{-}}{\sigma_{\mathrm{NC}}^{+} + \sigma_{\mathrm{NC}}^{-}}$$

polarized

$$\Delta A_{\rm PV} = \frac{\Delta \sigma_{\rm NC}^0}{\sigma_{\rm NC}^0}$$

WILSON COEFFICIENTS BOUNDS

Marginalized bound of \mathcal{C}_k

$$\Delta C_k = \sqrt{\Delta \chi^2(1,c)(F^{-1})_{kk}}$$
 quai

F is the Fisher matrix of the fitted parameters

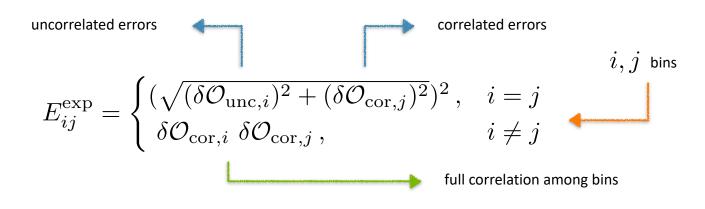
quantile of the χ^2 distribution for d=1,2 marginalized fitted parameters at confidence level c

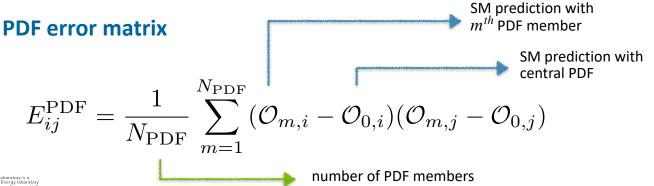
Confidence ellipses

$$(C_k \quad C_{k'}) \begin{pmatrix} (F^{-1})_{kk} & (F^{-1})_{kk'} \\ (F^{-1})_{k'k} & (F^{-1})_{k'k'} \end{pmatrix}^{-1} \begin{pmatrix} C_k \\ C_{k'} \end{pmatrix} = \Delta \chi^2(2, c)$$

COVARIANCE MATRIX

Experimental error matrix





COVARIANCE MATRIX

Total covariance matrix

$$V_{ij} = E_{ij}^{\text{exp}} + E_{ij}^{\text{PDF}}$$

for joint fits, with more than one experiment

joint covariance matrix

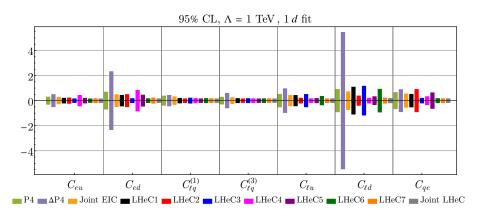
LHeC case

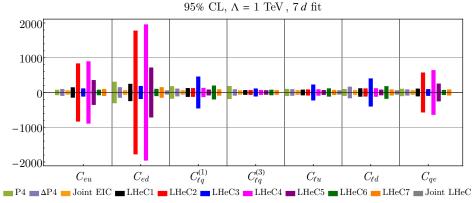
$$V = egin{pmatrix} V_1 & J_{12} & \cdots & J_{17} \ & V_2 & \cdots & J_{27} \ & & \ddots & dots \ & & V_7 \end{pmatrix} egin{pmatrix} J_{nn'} = J_{nn'}^{ ext{exp}} + J_{nn'}^{ ext{PDF}} \ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

 V_n is the covariance matrix of the n^{th} LHeC set

MARGINALIZED BOUNDS

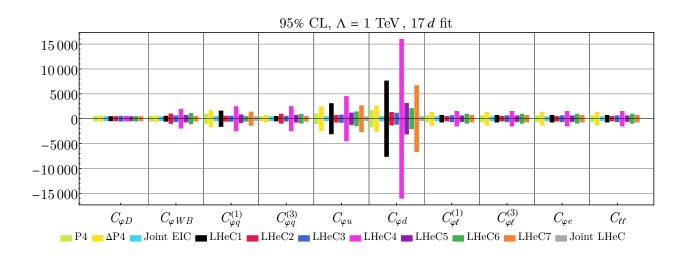
Four-fermion Wilson coefficients





17D FIT

Marginalized bounds



17D FIT

Marginalized bounds

	Joint EIC	Joint LHeC	EW diboson, Higgs, and top data
C -			
$C_{\varphi D}$	[-3.8, 3.8]	[-0.019, 0.019]	[-1.6, 0.81]
$\frac{\Lambda}{\sqrt{C_{\varphi D}}}$	0.51	7.2	0.91
$C_{\varphi WB}$	[-9.9, 9.9]	[-0.098, 0.098]	[-0.36, 0.73]
$\frac{\Lambda}{\sqrt{C_{\varphi WB}}}$	0.32	3.2	1.4
$C_{\varphi q}^{(1)}$	[-38., 38.]	[-0.40, 0.40]	[-0.27, 0.18]
$\frac{\Lambda}{\sqrt{C_{\varphi q}^{(1)}}}$	0.16	1.6	2.1
$C_{\varphi q}^{(3)}$	[-4.1, 4.1]	[-0.11, 0.11]	[-0.11, 0.012]
$\frac{\Lambda}{\sqrt{C_{\varphi q}^{(3)}}}$	0.49	3.1	4.1
$C_{\varphi u}$	[-38., 38.]	[-0.51, 0.51]	[-0.63, 0.25]
$\frac{\Lambda}{\sqrt{C_{\varphi u}}}$	0.16	1.4	1.5
$C_{\varphi d}$	[-84., 84.]	[-0.82, 0.82]	[-0.91, 0.13]
$\frac{\Lambda}{\sqrt{C_{\varphi d}}}$	0.11	1.1	1.4
$C_{\varphi\ell}^{(1)}$	[-18., 18.]	[-0.094, 0.094]	[-0.19, 0.41]
$\frac{\Lambda}{\sqrt{C_{\varphi\ell}^{(1)}}}$	0.23	3.3	1.8
$C_{\varphi\ell}^{(3)}$	[-4.1, 4.1]	[-0.060, 0.060]	[-0.13, 0.055]
$\frac{\Lambda}{\sqrt{C_{\varphi\ell}^{(3)}}}$	0.49	4.1	3.3
$C_{\varphi e}$	[-5.7, 5.7]	[-0.16, 0.16]	[-0.41, 0.79]
$\frac{\Lambda}{\sqrt{C_{\varphi e}}}$	0.42	2.5	1.3
$C_{\ell\ell}$	[-7.7, 7.7]	[-0.039, 0.039]	[-0.084, 0.02]
$\frac{\Lambda}{\sqrt{C_{tt}}}$	0.36	5.1	4.4