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Measurement of neutral current eTp cross sections at high Bjorken = with the

ZEUS detector
ZEUS collab., Phys.Rev. D 89, 072007, hep-ex:1312.4438 (2014)

e Unique e*p and e”p data set extending to x = 1
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’ ‘:‘ ' CeL ‘ e Data not used in any global pdf fit
DT e No higher twists which plague analysis of other
high-x data

T Illllll

10° e Event numbers and differential cross-sections are

\ given in 153 x-Q2 bins for each data set
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o 003<x <1 At high x only integrated cross-sections are given
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Use the full data set in a Bayesian pdf fit of bin-counts that can
handle the Poisson statistics of low event numbers at very large x



Bayesian forward model approach

Parameterise pdfs at some Q5 and evolve at NNLO

Compute at NNLO F,, F; and xF5 and Born neutral current efp cross-sections
Integrate x-sections over bins in x-Q% and compute event numbers

Apply radiative and detector effects to get predictions for the observed events n
Compute Poisson likelihood P (n|0) for the set of fit parameters 0

Define prior probabilities P(0) for the fit parameters

Get posterior from Bayes theorem

P(@|n,model) < P(n|8)P(0)

Posterior is also conditional on the choice of parameterisation



e Bayesian approach is very attractive because ...

No Gaussian assumptions
Constraints are easily implemented (posterior cannot extend beyond prior range)
Badly constrained parameters do not spoil the fit

Uncertainties in badly constrained parameters (as encoded in the prior) are automatically
propagated to the posterior of other parameters

Can easily judge information content of the data by comparing posterior to prior

Marginalisation of the posterior gives easy access to single-parameter distributions and correlations

e Butalso...

Priors should be chosen with care to not introduce bias in the posterior

Need lots of CPU to map-out the posterior in multi-dimensional parameter space

For this analysis we use the Bayesian Analysis Toolkit and QCDNUM



BAT.jl Bayesian Analysis Toolkit e, o8 computer

aaaaaaaaaaaaaaaaaaaa

e High-performance toolkit for Bayesian inference
- Tools for definition of likelihoods, priors and posteriors
- Provides MCMC sampling techniques to explore the posterior
- Location and interval estimation, marginalisation, visualisation, etc.

- And much more ...

o Written in Julia (with Julia interface to QCDNUM)

BAT.jl https://bat.github.io
Analysis  https://github.com/cescalara/PartonDensity.jl



Q:’DNUM QCDNUM and SPL'NT www.nikhef.nl/~h24/qcdnum

e Use QCDNUM for evolution and structure functions at NNLO

e SPLINT add-on provides cubic spline interpolation and integration

Spline interpolation much faster than computing stfs and xsecs from scratch

Needs some tuning of spline-grid to balance speed vs accuracy

SPLINT provides fast integration over bins taking kinematic limit into account

SPLINT integration is factor 300 faster than 2-dim Gauss integration

Timing (MacBook Pro 2018) 4 , ,
Ao/o < 5X10™* along the kinematic cut

Evolution 00005
\//\A/\”\/“ 0e0R s 2D\ o Doog0 Sy j/ V

6 Stf splines 22 7 2.9 0
g -0.0005 - L
Xsec spline 100 25 2.2 Ac/oaty=1andy =0.7
Integration 429 bins 0.8 oot ' ' ' ' '
0.001 0.003 0.01 0.03 0.1 0.3 09
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Parameterisation

Parameterise pdf as beta distribution zf(z) = Az*(1 — z)®

IO\ + DK + 1)
T\ + K +2)

1
Integrable forA > -1 A = / rf(x)der = A
0

Replacement A — A — 1 for valence pdf gives number density

Integrable for A > 0 giving A; = N/ (X + K + 1) with { Ng =1

L T(ND(K; + 1) N =2
s
Can fix valence A for given N and A through A, = N !
© . O+ K+

Easy to control low-x behaviour
- Integrable and decreasing towards low x for A > 0 (valence)

- Integrable and increasing towards low x for =1 < A < 0 (sea, gluon)



Parameterise 5 flavours at input scale Q5 = 100 GeV?

rd¥(z) = Agatd(1 — z)kd
zu’(x) = A, 2™ (1 — z)Ee
= A,,, ZU)\G(l — .CC)K‘?

)
r) =Aj 1t (1 — z)Ke

Gluon with a valence and sea component
Fix A4 and 4,, via the quark counting rules
All xg have the same shape but different normalisations

Parameterise HERAPDF at Q% = 100 GeV? to
check flexibility as shown here for u¥ and u

Gluon sea component has same high-x power as the anti-quarks

Do not fit normalisation constants but momentum fractions A which are more meaningful
Momentum sum constraint A, + A, + QZ Ag+AY+ A3 =1
q

7 shape parameters + 9 momentum fractions with sum rule
constraint contribute 15 degrees of freedom to the fit
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@? (GeV?)

Fvent predictions

Evolve at NNLO with QCDNUM and compute neutral current etp cross-sections

ute ¢

P(n|6) =]]

bins

n!

ZEUS, Phys. Rev. D 101, 11209, hep-ex:2003.08732 (2020)

Q? (GeV?)

ZEUS MC
ctes
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Integrate over 429 bins and compute vector of event predictions v
Multiply by matrix RT to correct for radiative and detector effects: U = RTvV
This gives the observed event predictions U in 153 ZEUS bins for each data set

For parameters 8 the predictions u(8) give for the likelihood of observing the events 7 :

Added to RT is the weighted
sum of 10 systematic matrices

The 10 weights 0; are left free
parameters in the fit giving a
total of 16+10=26 parameters



Priors

M. Betancourt, Proc. AIP

Conf., 1443, 157 (2012
Take 9-dimensional Dirichlet distribution for momentum prior ( )

- dir(a) with 9 shape parameters « is multivariate extension of beta distribution
- Lives on an 8-dimensional manifold in the space A; € [0,1] with Y} A; =1

Set Dirichlet shape parameters & according to asymptotic expectations
- A(gluon) =~ A(quarks), A(uY) = 2A(dY), A(s,c,b) ~ small

Pdf shape priors set to truncated Prior Range
Normal or Uniform such that the o Dir(20, 10, 20, 20, 5, 2.5, 1.5, 1.5, 0.5) [0, 1]
pdfs are integrable and have the K.  Normal(3.5, 0.5) [2, 5]
required low-x behaviour K4 Normal(3.5, 0.5) [2, 5]

Ay Uniform [0, 1]

A Uniform —1,-0.1]

Priors of systematic & parameters

[
set to truncated Normal with zero K, Normal(4, 1.5) [2,7]
T Ag Uniform [—1,—-0.1]
mean and unit width
K; Normal(4, 1.5) 3, 10]
) Normal(0, 1) [—5, 5]




Performance

Analysis results based on 2 MCMC chains of 500k samples each
On a 2021 MacBook Pro (M2 processor) the 1M samples take

- About 1 hr burn-in time
- About 3 hrs running time

Smaller samples already give good results but less smooth posterior
After burn-in the chains could be farmed-out on different machines
Did not yet exploit the potential for threaded computing in QCDNUM

Much room for increased performance ...




Results

The real result of the analysis is the 26-dim posterior in parameter space

Parameter values and errors are defined in two ways as
- Position of the mode of the posterior in parameter space

- Mode of the marginal parameter distribution with error corresponding to the smallest
credible interval around the mode that contains 68% probability

Here are the parameters

Global Marginal Global Marginal
that are reasonably well ode  mode ode  mode
constrained by the data A, 0219 0.219199% g, 376  3.781014

Ag  0.099 0.0887003%  Ka 366  3.69707¢
Az —055  —0.527g% Ky 601 6387y
Ky 4.92 5221020

2Az 0126 0.10470037  2A;  0.031  0.02475037

A} 0265 023970032 A 0.245  0.2417003¢

n PDF fits to ZEUS high-x data



Fitted event counts versus data
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e Compute event predictions from posterior mode parameters (bands) and

Q” [GeV’|

@ 650 — 800
@ 300 — 950
@ 950 — 1100
@ 1100 — 1300
@ 1300 — 1500
@ 1500 — 1800
@ 1800 — 2100
@ 2100 — 2400
@ 2400 — 2800
@® 2800 — 3200
® 3200 — 3800
® 3800 — 4500
4500 — 6000
6000 — 8000
8000 — 11000
11000 — 20000

compare to observed event counts (dots), plotted at the bin centers

e Pierson chi-squared gives y*/pt = 321/306 with a p-value of 0.27

Our parameterisation yields an excellent description of the data
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o . Momentum fraction

Prior

40 B . L (] Iy
~ ol M Posterior 13 Priors and posteriors
q <pr> 0.25 4 10 b <pr> 0.12 . y
E/ 20 <po> 0.22 E <po> 0.09 .

ol 5 | e The data very much constrain

oL e b the momentum carried by the

0.0 0.1 0.2 03 04 0.5 0.0 0.1 0.2 03 04 0.5

A, A, up-valence

2T o e Weaker constraints on the
~ o 10} o down-valence, sea and gluon
Aq10¢ < .
< | e From global mode we find

5 L

0 ' ' 0

Asea Ag
0.22 0.10 0.17 0.51
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Momentum A versus 1- x power K
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Very strong constraint on the up-valence parameters

xFitter Externnal meeting 05-05-2023

Bayesian PDF fits to ZEUS high-x data

15



Up and down valence distributions
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e The insets show the effective 1-x power f(x) = dlnxf/dIn (1 — x)

e The (5 slope of u, agrees well with a recent summary from Ball et al.

R. Ball, E. Nocera and J. Rojo, Eur. Phys. J. C76 (2016), 383, hep-ph:1604.00024
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Compare to HERAPDF

0.0 0.2
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0.4

——xS(z) x 01
—— zg(x) x 0.1
—xd (x)

—— HERAPDF2 NNLO

0.6

0.8 1.0

Bayesian PDF fits to ZEUS high-x data

H. Abramowicz et al., Eur. Phys. J. C75, (2015) 12, 580

Analytic parameterisations
strongly couple regions of
small and large x

HERAPDF parameterisation
is similar to ours but fitted
at much lower x (not using
the ZEUS high-x data)

This may explain at least
part of the observed
differences
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Summary

The Bayesian analysis of ZEUS high-x data shows that these data carry a lot of information on
the up-valence distribution

Given our parameterisation we obtain accurate results on the momentum A carried by the up-
valence quark and its (1-x) power K (marginal mode and 68% credible interval)

A=0227301 K =3.8%3;3

What is next ...

Paper with detailed description of our analysis is in preparation

Extend the analysis to investigate parameterisations with Bayesian model-selection techniques

Exploit in the extended analysis the many opportunities for parallel computing

Bayesian pdf fitting is a viable, challenging, and very interesting undertaking!



