EXPERIMENTAL Symmetric Hessian errors in xFitter

- Two main methods for uncertainty bands present in xFitter MC errors and asymmetric Hessian errors based on J. Pumplin "Iterate" procedure (Phys.Rev.D65:014011,2001).
- Symmetric Hessian errors provide more compact representation of the errors and can be sufficiently accurate for many applications.
- The code from "Iterate" is not absolutely stable and does not allow for parameter limits
- Use built in Minuit Hesse method instead, and diagonalize covariance matrix using the usual method: $C = V^T D V = \Gamma^T \Gamma$ where $\Gamma = \sqrt{D}V$
- Activated by "DoBandsSym" flag in OUTPUT namelist. Note that DoBandsSym and DoBands flags are mutually exclusive: the code stops if both are activated.
- Usual PDFS_Q2vAL_s01s_0X.TXT and LHAPDF6 symmetric grids are produced when the flag is activated: xfitter-draw and lhapdf6 tools work without any modifications.

1

Validation: HERA-II fit with ZMVFNS

- Use HERA-II default set, ZMVFNS (with $m_c = 1.8 \text{ GeV}$) for fast tests.
- Use default 14 p parametersiation with negative gluon.
- Good agreement observed for all quark densitives (u_v and d_v are shown as example). Huge difference for the gluon uncertainty.

 \rightarrow Hesse gluon uncertainty band is more similar to total HERA-II band or to MMHT14 error band, shown for comparison.

Differences between Hesse and Iterate

Both Hesse and Iterate methods are used to numerically estimate second derivative of the χ^2 function with respect to the fit parameters which close to the minumum takes the form:

$$\chi^{2}(a) = \chi^{2}_{\min} + \frac{1}{2} \sum_{i,j} V_{ij} a_{i} a_{j}$$
$$V_{ij} = \frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}}$$

The methods differ in the way it is done:

- Hesse uses small variation of a_j to get better approximation of the local derivative. In order to speedup calculations, the χ^2 function is evaluated only in a minimally required set of points.
- Iterate attempts to approximate the derivative by finite variations of the parameters, corresponding to $\delta \chi^2 = N$ where for xFitter N = 1. The directions for these variations are determined in iterative procedure, starting from initial approximation of the matrix V_{ij} by varying parameters a_j . For the next iterations eigenvectors of V_{ij} from the previous iteration are used. To improve accuracy and effectively take into account higher orders, the χ^2 function is evaluated for all up and down variations of the parameters (×4 amount of variations in Hesse).

Check: use MC error bands

- Check bands using MC method (2000, 1950 converged, new file output/Status.out file with one string "OK" or "Failed" to simplify convergence check)
- MC bands are slightly bigger for u_v and d_v and in reasonable agreement with Iterate for the gluon.
- \rightarrow Pumplin's Iterate errors seem to be correct.

Check II: use MC covariance matrix for PDF pars

- Extend the method for symmetric error bands by allowing external covarnace matrix of parameters (OUTPUT namelist variables ReadParsFromFile, ParsFileName, and CovFileName.
- Use the covariance matrix of fit parameters a_j determined based on converged MC-method fits
- The error bands are again very large for the gluon density, in agreement wit Hesse-based evaluation.
- \rightarrow Hesse Hessian matrix of parameters is not incorrect.

Check III: use Iterate covariance matrix

• "Iterate" returns hessian matrix as one of the outputs.

• Plugin this matrix as external into new symmetric code: all error bands in reasonable agreement with the direct asymmetric Pumplin's bands.

 \rightarrow Implementation of the Hessian matrix eigenvector representation is correct.

 \rightarrow all seems to be technically OK.

Parameter uncertainties

Parameter	Iterate errors	MC Hessian matrix	Hesse errors
'Bg'	0.03 ± 0.052	0.014 ± 0.031	0.029 ± 0.113
'Cg'	5.43 ± 0.510	6.726 ± 0.503	5.43 ± 0.591
'Aprig'	0.21 ± 0.062	0.418 ± 0.179	0.21 ± 0.266
'Bprig'	-0.300 ± 0.033	-0.254 ± 0.041	-0.300 ± 0.093
'Cprig'	25.00	25.00	25.00
'Buv'	0.854 ± 0.023	0.864 ± 0.029	0.854 ± 0.023
'Cuv'	4.747 ± 0.081	4.784 ± 0.090	4.747 ± 0.084
'Euv'	7.9 ± 1.04	8.49 ± 1.22	7.9 ± 1.1
'Bdv'	1.121 ± 0.069	1.123 ± 0.079	1.121 ± 0.071
'Cdv'	5.23 ± 0.34	5.21 ± 0.35	5.23 ± 0.342
'CUbar'	6.6 ± 1.29	7.97 ± 1.6	6.6 ± 3.57
'DUbar'	0.1 ± 1.19	4.31 ± 2.5	0.1 ± 3.94
'ADbar'	0.2631 ± 0.0071	0.2642 ± 0.0069	0.2631 ± 0.0071
'BDbar'	-0.1652 ± 0.0032	-0.1682 ± 0.0031	-0.1652 ± 0.0032
'CDbar'	11.7 ± 1.7	11.57 ± 1.86	11.6 ± 2.05
'alphas'	0.1180	0.1180	0.1180
'fs'	0.4000	0.4000	0.4000

Correlation matrices

• Correlaton matrices of the fit parameters determined using Hessian (left) MC (middle) and Iterate (right) method show similar pattern for the quark-distributions but rather different for the gluon parameters.

Correlation studies

- Non-linear correlations can be studied using MC fits.
- For some parameters correlation patterns are not far from Gaussian.

Correlation studies II

- For gluon parameters B_g , A'_g and B'_g the correlation pattern is highly non-linear, this probably explains the differen
- While Hesse uses small variations of the parameters around the minimum to determine the Hessian matrix, the Iterate method determines effective covariance using much larger parameter variations (along χ^2 eigenvectors, from the previous iteration) corresponding to $\Delta\chi^2 = 1$. This aparently allows to reproduce better the correlation patterns of PDFs.

Distribution of gluon PDF parameters

11

Cluster map for correlation matrix (MC method)

