
RD51 Meeting 120/06/2023

 Garfield++ Parallelisation using GPUs

RD51 Meeting, 19th June, 2023
Mark Slater, Tom Neep, Konstantinos Nikolopoulos, Birmingham University

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie

grant agreement no 101026519 (GaGARin).

RD51 Meeting 220/06/2023

Overview

This talk provides an update to the our work on investigating the
use of GPUs within Garfield++. It will cover:

Motivation and Setup ●
Consistency Checks ●

Code Changes ●
Performance Gains ●

Details on Code Conversion ●
Future Plans ●

Disclaimer: As before, we’ve approached this from the point of view of the
code, NOT the physics, i.e. the GPU code is running the same algorithms
(and where possible, the same code) as the non-modified CPU version

RD51 Meeting 320/06/2023

Motivation
Garfield is one of the ‘industry standards’ in the Gaseous Detectors field

It has a number of applications including Ionisation generation, Electric Fields and
Electron Transport and avalanching. For this case study we have focused on Gas Electron
Multiplier (GEM) detectors using the AvalancheMicroscopic class

In this work, it was found that that the generation and transport of typical events within
Garfield can take a long time (5-10 minutes per event) where there are several hundred
thousand electrons in the avalanche

As the transport of each electron in the avalanche is independent, we have been exploring
the benefits of using parallelisation, specifically porting the code to run on GPUs

RD51 Meeting 420/06/2023

An AvalancheMicroscopic ‘Iteration’

Check pos is
Valid and find
Electric Fields

Add random time
Steps until collision

Process
collision

Store updated
electron info

Input initial
Electron pos

x1-
x100

x1-100
Electron
Transport

Remove dead
Electrons and
Add new ones

Repeat
for each
electron
in stack

Stack
Processing

RD51 Meeting 520/06/2023

Hardware/Software Used

Development was done on a basic server with:

Dual E5-2620 v4 (16 core total) ●
64GB RAM ●

This has two Tesla P100 cards (only 1 used at a time in study):
Pascal architecture ●

3584 cores each ●
16GB memory ●

Memory bandwidth: 732.2 GB/s ●
Base Clock: 1190 MHz ●

CUDA 11.5 was installed with NVIDIA driver 495.29.05 running CentOS 7

RD51 Meeting 620/06/2023

GEM Model Used

For this study we used a standard THGEM:
1mm thick FR4 coated on both sides with a 17 μm layer of copper ●

hexagonal pattern of cylindrical holes ●
 ∅ = 400 μm ●

pitch: 700 μm ●

Using Ar:CF4 (80%:20%) at various pressures to have different avalanche sizes.

RD51 Meeting 720/06/2023

Consistency Checks - Results
The initial work was designed to be a feasibility study to make sure this was worth
pursuing, i.e. results were consistent and significant performance benefits were seen

As has already been reported, running the same avalanche generation code through the
GPU led to almost exactly the same numerical results with discrepancies due to
unavoidable floating point differences at the level of 10-8

We get very good
agreement in the stack
sizes for the majority

of the event

The number of end points at each
 iteration is in very good agreement

with the difference being <0.15%

RD51 Meeting 820/06/2023

Stack Processing
Originally, a 20x speed up was found but a lot of time was spent processing the electron
stack, i.e. removing terminated electrons and adding newly produced ones to the stack

This slowdown was due to the data reordering being done. To avoid this, an index array
was processed instead and each thread used this as a lookup into the electron data stack

After this change, the GPU stack processing time was found to be negligible (<2%)

0 1 -1 3 4 5 -1 -1 8 9

Index array after transport step:

1 -13 4 5 -1-18 9

0 1 210 11 120 1 3 4 5 8 9

Index array after processing:

Electron Data after transport step:

ID: 0
Status: 0
X, Y, X,

Etc

ID: 1
Status: 0
X, Y, X,

Etc

ID: 2
Status: -1
X, Y, X,

Etc

ID: 3
Status: 0
X, Y, X,

Etc

ID: 4
Status: 0
X, Y, X,

Etc

ID: 5
Status: 0
X, Y, X,

Etc

ID: 6
Status: -1
X, Y, X,

Etc

ID: 7
Status: -1
X, Y, X,

Etc

ID: 8
Status: 0
X, Y, X,

Etc

ID: 9
Status: 0
X, Y, X,

Etc

Electron Data after processing:

ID: 0
Status: 0
X, Y, X,

Etc

ID: 1
Status: 0
X, Y, X,

Etc

ID: 2
Status: -1
X, Y, X,

Etc

ID: 3
Status: 0
X, Y, X,

Etc

ID: 4
Status: 0
X, Y, X,

Etc

ID: 5
Status: 0
X, Y, X,

Etc

ID: 6
Status: -1
X, Y, X,

Etc

ID: 7
Status: -1
X, Y, X,

Etc

ID: 8
Status: 0
X, Y, X,

Etc

ID: 9
Status: 0
X, Y, X,

Etc

ID: 7
Status: -1
X, Y, X,

Etc

ID: 8
Status: 0
X, Y, X,

Etc

ID: 9
Status: 0
X, Y, X,

Etc

New Electron Data
(using thrust::sort_by_key)

(using thrust::remove)
Only significant
data movement

RD51 Meeting 920/06/2023

Random Engine

To do the consistency checks, we set up a new Random Engine that pre-
calculated a large stack (14.5GB) of random numbers using the default
RootEngine

These were then copied to the GPU and the avalanche code for both CPU and
GPU drew from these based on Electron ID in the stack instead of calculating
them on the fly

For performance comparison in a realistic environment however, we switched
the CPU back to using the default RootEngine and coded a GPU RNG Engine that
used the cuRAND library supplied by CUDA

This library can accept a single seed as expected but ensures that each thread of
the GPU will use a different sequence of random numbers

This change resulted in a speed up of ~50% in transport processing times in
both the CPU and GPU code. Therefore, the overall change in relative
performance between GPU and CPU was mostly negligible

RD51 Meeting 1020/06/2023

Relative GPU Performance

Generating 50 events on both CPU (~164mins) and GPU (~8mins) and
comparing the transport times for each iteration over all of these against
number of particles shows an average speed up of 30-35x in transport
processing on average

RD51 Meeting 1120/06/2023

Variations in Performance
As was noted previously in the feasibility study, the time taken for an iteration seemed to be greater
if the number of electrons was increasing (i.e. during the start of the avalanche) for both CPU and
GPU

This was found to be due to electrons that were drifting for the full 100 loops in the iteration rather
than creating a new particle and breaking out of the loop – a consequence of the drift region
underneath the avalanche region in the GEM

Interestingly, these iterations also showed an increase in relative GPU performance, most likely due
to increased occupancy of the GPU – there would be decreased divergence due to fewer breaks in the
loops

RD51 Meeting 1220/06/2023

Converting Data for the GPU

The geometry and setup in Garfield is stored in several classes:
Sensor ●

MediumMagBoltz ●
ComponentFieldMap ●

These couldn’t just be run on the GPU due to extensive use of std::vector so
copies of the classes were developed that were then filled from the originals

We ensured we did as much pre-processing on the CPU first before transferring all
data to the GPU. Note the volume of data here is relatively small (~100MB)

Medium Class Medium::CreateGPU
TransferObject MediumGPU

Build with G++ Build with NVCC

Data members stored on host Data members stored on GPU

RD51 Meeting 1320/06/2023

Converting Code for the GPU
Inheritance trees in Sensor and Medium classes

In the original code, derived classes of parent abstract classes were used. At first, similar inheritance
trees were created for the GPU classes but this was found to be 1.5x slower than the ‘flat’ structure due
to the overhead of vtable lookups on the GPU

In order to still allow the required polymorphism, the ‘CreateGPUTransferObject’ function was
overloaded to set an enumerated flag to the required concrete class

When calling virtual functions in the GPU class, this flag is then checked in a ‘switch’ statement to
decide which actual code to call

Ensuring no Repeated code

As the majority of the code in these ‘Geometry’ classes was exactly the same for both CPU and GPU
(though the members referred to were often different types), a form of cross compilation was used

By adding macros around the appropriate code, the same function code and declarations could be
used for both GPU and CPU compilation

This prevented duplication of code in the codebase and kept the differences clear and together

RD51 Meeting 1420/06/2023

Converting the Code

Sensor.cc

#include “Sensor.hh”

...

#ifdef GPUCOMPILE
...
#endif

...

SensorGPU.cu

#define GPUCOMPILE

#include “SensorGPU.h”
#include “Sensor.cc”

Sensor::CreateGPUTransferObject()
{

}

Sensor.hh

#ifdef GPUCOMPILE
#define __SENSORCLASS__ SensorGPU
#else
#define __SENSORCLASS__ Sensor
#endif

class __SENSORCLASS__
{

...
}

SensorGPU.h

#include “Sensor.hh”
Essentially just a stub
file that includes the

main header file

Includes the c++ source file
after setting the flag to only

include the GPU parts

Defines the name depending
on if you’re compiling the GPU

or CPU code

Functions used by the GPU
are surrounded by #defines

as well as any slightly
different code required

RD51 Meeting 1520/06/2023

Debug and Profiling Options
During development of the GPU code, a number of profiling and debug options were added
to check consistency and performance

These have been kept in the AvalancheMicroscopic class to aid with further development

They include:

SetShowProgress
Print out a brief summary for each iteration showing time taken and stack size

SetMaxNumShowerLoops
Stop the event simulation after a maximum number of iterations

SetDebugShowerIterationAndElectronID
Print debug info (positions and energies) for a particular electron ID in a particular

iteration. Useful for checking consistency

PrintComparisonStats
Print out summaries of each iteration (stack size, processing times and transport times).

Note this info is also directly available from the class after event generation

RD51 Meeting 1620/06/2023

Generic Multi-threading
A significant effort was also made to use this work to allow CPU multi-threading in the
AvalancheMicroscopic class

This was done at a low level by starting a pre-determined number of threads and
dividing the electrons to process in the stack between them

It was assumed that the improvements would scale roughly linearly with the number of
threads used (assuming num threads < num cores), however the same performance as
single thread was found, irrespective of the number of threads running

After significant investigations into the reason, it was found to be due to the default
compiler optimisations (-O3) that are used when compiling Garfield (It is a known
issue/feature that compiler optimisations can affect multi-threaded code)

Turning these off showed the expected performance increase over single thread but that
single thread performance was drastically reduced.

More investigations are needed to try switching off optimisations on particular parts of
the code or maybe looking at using OpenMP in some areas of the code

RD51 Meeting 1720/06/2023

Future improvements

Increase GPU efficiency
Profiling of the GPU code currently shows very low GPU occupancy

(~14%). To try to improve this we plan to look at:
Ways to avoid branching in the code ●

Breaking the algorithm down into smaller elements ●
Code simplifications to reduce register use ●

Switch between GPU/CPU use automatically
Due to overheads for setup/copying, you only get significant benefit from

the GPU with larger avalanches. We will provide an option to switch the
generation to the GPU at these points.

Allow multiple GPU use
There’s no technical reason why multiple GPUs can’t be used

simultaneously for bigger efficiency gains

RD51 Meeting 1820/06/2023

Summary

We have got a working GPU version of the AvalancheMicroscopic class
from Garfield that could be useful for those doing investigations into
larger avalanches

Consistency between the GPU and CPU versions has been shown to a very
high level and a performance increase of x30-35 has been shown

Differences between the GPU and CPU as well as factors affecting
performance have been investigated and understood and there appears to
be scope for increasing this performance gain even further

We’re happy to start discussions to look at getting this work integrated
into the Garfield++ codebase (initially as a branch) to allow people to try
it and provide feedback!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

