

High rate MRPC for CBM-ToF system

Kai Sun, Botan Wang, Yi Wang, Ingo Deppner

Tsinghua University, CBM Collaboration

Outline

• CBM-ToF requirements

• Sealed MRPC2 for CBM-ToF

• Low resistive glass MRPCs for high counting rate

• Development of pad spacer MRPCs

• Summary

CBM-ToF requirements

CBM-ToF Requirements

- > Full system time resolution sT ~ 80 ps
- Efficiency > 95 %
- $\blacktriangleright \quad \text{Rate capability} \leq 30 \text{ kHz/cm2}$
- \blacktriangleright Polar angular range 2.5° 25°
- Occupancy < 5 %</p>
- Low-power electronics
- ➤ (~100.000 channels)
- Free streaming data acquisition

CBM outer ToF-wall module

	CBM
Active area per detector (cm)	33 x 27.6
Total active area (m ²)	120
Strip width(mm)	7(strip)+3(interval)
Stript length(mm)	270
Gap×thickness(mm)	8 x 0.25
Gas mixtures ($C_2H_2F_4/C_4H_{10}/SF_6$)	90/5/5
Operating field (kV/cm)	110
Efficiency	97%
Time resolution(ps)	80
Max rate (Hz/cm ²)	50k
Glass type	Low resistive glass

• CBM-ToF wall module 1a

• Parameters of MRPCs in module 1a

Sealed MRPC2 for CBM-ToF

3D printed sealing frame with Good strength, insulation and radiation persistency

D Features :

1. **Gas saving :** stable operation under < 10 sccm/m² gas flow in cosmic ray test

- 2. Higher gas exchange efficiency:
- Decrease the wait time for gas purging in X-ray test
- Excellent current behavior under high rate irradiation

07 Mar. 2023

The 41th CBM Collaboration Meeting

Sealed MRPC2 for CBM-ToF

- Geometry unchanged, making substitution easier
- High efficiency and time precision maintained.

Low resistive glass for high counting rate

• Voltage drop in the gas gap when avalanche happens

$$\overline{V}_{drop} = V_{ap} - \overline{V}_{gap} = \overline{IR} = \overline{q}\phi\rho d$$

- The smaller the voltage drop, the higher efficiency and rate capability
- Low resistive glass reduces the voltage drop, obtaining a higher counting rate
- Volume resistivity (Ω ·cm): 10¹² (Other glass)-> 10¹⁰ (Low resistive glass)

Low resistive glass

Dimension	33 x27.6cm ²
Bulk resistivity	~10 ¹⁰ Ωcm
Standard thickness	0.7, 1.1mm
Thickness uniformity	20µm
Surface roughness	<10nm
Dielectric constant	7.5 - 9.5
DC measurement	Ohmic behavior
	stable up to 1C/cm ²

Parameters of low resistive glass MRPC in beam test

• Real-size high rate MRPC has been tested in CAEN, JINR, and GSI.

- JINR 2013 beam test scan
 GSI 2014 beam test
 Rate: 70kHz/cm²
 Efficiency: 90%
 Time resolution: 80ps
 GSI 2014 beam test
 Rate: <1000Hz/cm²
 Efficiency: 97%
 Time resolution: 48.7ps
- CAEN 2015 beam test
 Rate: 1kHz/cm²
 Efficiency: 90%
 Time resolution: 80ps

Spacer related effect: comparative study

- Two unsealed prototypes assembled
- Identical geometry and different fishline density
- Positions careful adjusted for identical flux condition
- Dark current correlated positively to fishline contact region size.

Glass dimension [mm]	180 x 60 x 0.7
Sensitive area [mm]	170 x 50
Gas gap thickness [mm]	0.25
N. of gaps	5
Working field [kV/cm]	110

Development of pad spacer prototype

- pad spacers of $3x3 \text{ mm}^2$ ($\Phi=4 \text{ mm}$ round pad for new one)
 - Smaller contact area: decrease by a factor of 2 3.78 vs. 7.2 cm² per gas gap
 - High bulk resistivity: fishline $10^{14} \Omega$ cm, mylar $10^{17} \Omega$ cm
 - discontinuous placement
- spacers are pasted one-sided on the glass
- spacers distributed with uniform intervals of 5 cm

Prototype prepared with CBM-TOF MRPC2 geometry.

Active area per detector (cm)	33 x 27.6
Stacks $ imes$ gaps	2 x 4
Gap thickness(mm)	0.25
Strip size (cm)	27 x 1.0
Gap thickness(mm)	0.25
Operating field (kV/cm)	110

Cosmic test results

- 5 ps timing precision for readout electronics
- NINO-based FEE: 150 mV threshold
- FPGA-TDM J. Lu et al. 2020
- HV scan carried out
- Plateau field 108-114 kV/cm
- Dark current: <50 nA
- 95% efficiency and 71 ps resolution verified.

X-ray test results

Summary

- Sealed MRPCs are developed for CBM-ToF, reducing gas-related effects at a high rate
- Low resistive glass for a high counting rate is developed and tested. High-rate MRPC for CBM can work stably at a rate of 70kHz/cm²
- Spacer effect observed at fishline region, pad spacer MRPC prototype shows good first results

• What's next:

A beam test of the pre-production series of the CBM-ToF is planned to be held. The parameter of pad spacer MRPC will be examined at that time.

Thank you!

<u>sun-k21@mails.tsinghua.edu.cn</u> <u>yiwang@mail.tsinghua.edu.cn</u>