New resistive-protected MPGD structures for cryogenic conditions, results from operation in Ar at 90K

Sara Leardini

Weizmann Institute of Science

Background

Needs in detectors with HV

spark-quenching

adjusting the charge-induction profile from moving charges to improve space resolution in tracking detectors

reducing local charging-up

Too conductive -> problem not solved

Solution -> resistive materials

Too resistive -> charging-up + field deformation

Objective

- Find a suitable material for spark-quenching operating at LAr temperature -> candidates: DLC, Fe₂O₃/YSZ ceramics

Right range of surface/bulk resistivity: $10-10^4$ Mohm / sq – $10^9 - 10^{12} \Omega \cdot cm$

 Characterize such materials + behavior with temperature (see S. Leardini et al., Nucl. Instr. Meth. A 1049 (2023) 168104 for DLC and https://arxiv.org/pdf/2305.12899.pdf for ceramics)

- Operate them in a detector (see https://arxiv.org/abs/2304.04044 + upcoming papers in near future!)

DLC characterization

- DLC produced at the University of Science and Technology of China

-Deposition through magnetron sputtering

- -Procedure: substrate kept in oven @ 70°C
 - surface cleaned with ethanol
 - vacuum @ 10⁻⁵ mbar
 - deposition (20-60 min)

- Six different ~ 10 x 10 cm samples with kapton substrate (named A-F)

From talk by Yi Zhou:

https://indico.cern.ch/event/852331/contributions/4611238/attachments/ 2367150/4042458/Resistive%20Detectors%20with%20DLC.pdf

Cryogenic setup

Home- made cryostat Able to measure all the range of resistivities

Uniformity and aging

-RT : no aging effect after transporting > 2 C / cm²

-LN : < 2% variations

-DUNE Far Detector (assuming ³⁹Ar background, gain =100): 60.5 µC/cm² in 10 years⁶

Linearity

All samples linear both at RT and 77K

R-T curves

$$R = R_{300} * \exp\left(\left(\frac{T_0}{T}\right)^a - \left(\frac{T_0}{300}\right)^a\right)$$

a = 1/3 for resistance over the surface

(see B. I. Shklovskii, A. L. Efros,
"Electronic Properties of Doped
Semiconductors", Springer, Berlin (1984)
and N. F. Mott, "Metal Insulator
Transition", Taylor & Francis, London
(1974).

Ceramics characterization

- Fe₂O₃/YSZ ceramics produced at Ceramics Institute of Galicia

- Made by slip casting, possible to produce samples with different concentrations of Fe_2O_3

Experimental setup

Studied samples with concentrations of Fe_2O_3 in the range 30% - 100%

Characterized behavior with respect to E field, temperature, time

Aging test

Linearity

40%

• 50% -60%

65%

75%

78%

10³

70%

R-T curve

Concentrations of Fe₂O₃ that yield right bulk resistivity @90K: 65% - 80%

Test in detector @ WIS: R(P)-WELL

Test in detector: setup

- Attenuated and collimated alpha source
- Drift region 15 mm, 500 V/cm
- -0.8 mm THGEM

-DLC fixed to a PCB board with electrically-insulating cryogenic epoxy, ceramics also with conductive epoxy

- Assembly inserted in a teflon cup, in saturated argon vapour (90K, 1.2 bar)

Starting point: unprotected structures THGEM and THWELL ->

-same experimental conditions

-single discharge makes stable gain operation impossible, power supplies had to be restarted

- max gain 6 and 8 respectively

$$G_{\rm Eff} = \frac{P_{\rm Amplif}}{P_{\rm Coll}}$$

 ΔV_{THGEM}

RWELL: gain curve

Gain stabilization curve at 90K – 20G Ω -RWELL

RWELL: spectra

RWELL: comparison

RPWELL: spectra

Typical spectra from MCA - 75%Fe₂O₃-RPWELL at 90K

Conclusions

 DLCs and Fe₂O₃/YSZ display good properties to use them as resistive protection for detectors that operate at cryogenic temperature

- A Fe₂O₃/YSZ ceramics was successfully operated in Ne/5%CH₄ atmosphere at LXe temperature (see A. Roy *et al* 2019 *JINST* **14** P10014)

-We managed to operate a detector at 90 K with DLC layers, obtaining a maximum stable gain of 30 with a 20 Gohm/sq sample

- We managed to operate the detector with two different ceramics samples, having 75% and 65% Fe2O3 concentration, obtaining a maximum stable gain of 16

Detector	V_{Max} [kV]	$\mathbf{G}_{\mathrm{Max}}$	$\mathbf{P}_d \ _{\mathrm{G}_{\mathrm{Max}}}$
75%Fe ₂ O ₃ -RPWELL	3.15	16	0
65%Fe ₂ O ₃ -RPWELL	3.15	12	0
$20G\Omega/\Box$ -RWELL	3.175	30	$\sim 1 \%$
$200M\Omega/\Box$ -RWELL	3.025	15	$\sim 1 \%$
THWELL	2.9	8	0
THGEM	3.2	6	0

Thanks for your attention!