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Outline

* Recap of the experiment

* Working with glass GEMs

* New camera readout

* Detector performance during multi-day long run.

* Preparations for neutrons



Mlgdal

The Migdal effect

pr01ect11e
* Direct DM experiments exploit the Migdal
effect to search for nuclear recoils below

threshold.

» This rare atomic effect was predicted by
A. Migdal in the 30’s/40’s and first
observed in radioactive decays in the 70’s 1o~5
— but not yet recorded in nuclear 10-%2} \
scattering.

10738}

Migdal topology involves an electron and a nuclear
recoil originating from the same vertex.
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* We aim to achieve the unambiguous &

observation (and characterisation) of the

Migdal effect using a low-pressure optical
TPC.
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The MIGDAL experiment

Low-pressure gas: 50 Torr of CF,

 Extended particle tracks

* Avoid photon interactions

Amplitude

e (Can work with fraction of Ar

Optical TPC X ,/ \. — | |51

Time

 Amplification: 2x glass-GEMs
cathode

* Optical: camera + photomultiplier tube

« Charge: 120 ITO anode strips neutron et DR CF, gas

High-yield neutron generator e

« D-D:2.47 MeV (10° n/s) G-GEMs

* Defined beam, “clear” through TPC ITO anode /

Electron and nuclear recoil tracks
* Migdal: NR+ER tracks, common vertex g - . &
* NR and ER have very different dE/dx 'm
* 5 keV electron threshold (Fe-55 calibration)
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The MIGDAL optical-TPC

Cathode woven mesh
280 pm Al wire

LNAAUGE

PMT

Cathode, GEM stack, ITO
10x10x3 cm? active region
(compact!)

Double glass-GEMs
Diameter: 170 pm | pitch: 280 pm | thickness: 570 pm
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Preparing G-GEMs

 We inspected for dust with a UV light and removed with a vacuum
» We have G-GEMs with copper and nickel (NEW!) metallisation.

* In preliminary testing we noticed that at high voltages sparks were
occurring on pillar support holes, not the active area.

* The metallisation is quite jagged around these holes.
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G-GEM resistivity

* We noticed the currents on our electrodes varying significantly with temperature.
* Checking an isolated G-GEM in a dry box showed the same effect.

* Our high-value protection resistors were causing problems as changes in G-GEM
resistivity corresponded to significant changes in potential difference (~5 V).
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Detector readout

Charge readout

6/19/2023

ITO anode strips
Post-GEM ionisation
Readout of (%,z) plane
Pitch: 833 ym

Digitised at 2 ns/sample
(Drift velocity: 130 ym/ns)

Optical readout

New cameral

qCMOS camera

(Hamamatsu ORCA - QUEST)
Detects GEM scintillation through
glass viewport behind ITO anode
Readout of (x,y) plane

Exposure: 8.33 ms/frame (continuous)
Px scale: 39 ym (2%2 binning)

Lens: EHD-25085-C; 25mm £/0.85

timothy.marleyl5@imperial.ac.uk
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VUV PMT (Hamamatsu R11410)
Detects primary and secondary
(GEM) scintillation

Absolute depth (z) coordinate
Digitised at 2 ns/sample

[Trigger]



Simulated camera readout (conservative gain)

Intensity [photoelectrons] Intensity [photoelectrons] Intensity [photoelectrons]

O 10 20 30 40 50 60 70 0 10 20 30 40 0 10 20 30 40

(Noisier old camera)

ORCA-Fusion (fast, 89 Hz) ORCA-Quest (std, 120 Hz) ORCA-Quest (quiet, 5 Hz)

170 keV fluorine + 5.25 keV Migdal electron



Capabilities of the ORCA Quest

 The ORCA Quest is capable of ‘photon-number resolving’ at the cost of
readout rate.

* We will not be using this mode for Migdal — risk of overlapping events.
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5Fe long exposure
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Comparison of the old/new cameras

* The noise is much more uniform and significantly lower on the Quest.

* Banding is more restricted to individual columns on the Quest.
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Noise correlation comparison

* For uncorrelated noise, we expect noise to increase with VN pixels binned.

Orca Fusion Orzrca uest

* The deviation from this scaling is a measure of the noise correlation.
* The ORCA Quest looks much better than the ORCA Fusion in this regard.
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Alphas with ORCA Quest

0 1 2 3 4 5 6 7 8 9 10 11 12

* Testing operational
stability with 37 Bq
252Cf source in 50
Torr CF,.

* The new camera
produces very good-
looking images!

* The optical distortion
and lens field
curvature are visible
towards the edges of
the image.

*4 alpha tracks spliced together



Afterglow with ORCA Quest

Intensity [photoelectrons]

* In the following 0 ; 2
frame of each alpha
tIaC]_{, we see an Artefact of splicing
afterglow of ~1 | /

photoelectron in
many pixels.

* This does not seem
to vary with
exposure time.

e We are in contact
with Hamamatsu.

*4 alpha tracks spliced together



Alphas in the ITO strips

* The signals from
alpha tracks create a
‘ripple’ in the ITO
strips.

* [TO strips 1 & 62,2 &
62 etc. are
connected. This is ok
for nuclear recoils as
no tracks will be
longer than 5 cm.

6/19/2023

Amplitude [V]

0.000 0.025 0.050 0.075 0.100
. .
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0.00

Amplitude [V]
0.02 0.04 0.06 0.08

ITO strip channels 60
strips apart are connected
for readout efficiency
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Sparks

—0.05

* We see sparks occasionally from ——

very high energy events.

* The electronics recover quickly
after, but the recorded waveforms
appear unsettling.

* Sometimes we see sparks on the
pillar holes (described earlier).

* The spark rate is not currently
concerning.
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Calibration with °°Fe

* The energy resolution at

‘alpha-stable’ voltages is a bit worse
than the maximum achievable resolution.

 What limits the energy resolution?
« We have not yet applied flat fielding to the ITO.

* The camera needs better flat fielding.
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Loss of gain over time

* We are currently
investigating the reason for a
loss of gain over time.

* The decline was ~0.8%/hr.
* Is it due to outgassing?
* Is it due to damage?
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—

Table installed
with lead
under shleld

NILE facility

* NILE facility is at TS2, ISIS

* We packed up the chamber
and moved it from lab 7 to
NILE mid-May.
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Assemblin
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Exciting time!

Wish us luck!
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Experiment paper:

Summ a_r'y https://doi.orq/10.1016/i.astropartphys.2023.102853

 The MIGDAL experiment aims to make a conclusive detection of the Migdal
effect, followed by a systematic study: first in pure CF4, then in other gases
and mixtures.

* We have tested the operational stability of the detector and are able to
simultaneously measure 5 keV electrons and higher energy alphas.

 G-GEMs work well in low pressure but come with caveats.

* We are awaiting first results of the DD neutron generator with our detector!

S Sz

Imperial College K{"o[/g
London LONDO

B UNIVERSITYOF UAM GDD
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Reserve slides
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Signal / background

D-D neutrons

D-T neutrons

Component Topology >0.5 5-15keV  >05 515 keV
Recoil-induced é-rays Delta electron from NR track origin ~0 0 541,000 0
Particle-Induced X-ray Emission (PIXE)

X-ray emission Photoelectron near NR track origin 1.8 0 365 0

Auger electrons Auger electron from NR track origin 19.6 0 42,000 0
Bremsstrahlung processes’

Quasi-Free Electron Br. (QFEB) Photoelectron near NR track origin 112 ~0 288 ~0

Secondary Electron Br. (SEB) Photoelectron near NR track origin 115 ~0 279 ~0

Atomic Br. (AB) Photoelectron near NR track origin 70 ~0 171 ~0

Nuclear Br. (NB) Photoelectron near NR track origin = ~0 0.013 ~0
Photon interactions

Neutron inelastic y-rays (gas) Compton electron near NR track origin 1.6 0.47 0.86 0.25
Random track coincidences Photo-/Compton electron near NR track | =0 ~0 ~0 ~0
Gas radioactivity

Trace contaminants Electron from decay near NR track origin | 0.2 0.01 0.03 ~()

Neutron activation Electron from decay near NR track origin 0 0 ~0 ~0
Secondary nuclear recoil fork NR track fork near track origin — ~ - ~
Total background Sum of the above components 1.5 1.3
Migdal signal Migdal electron from NR track origin 32.6 84.2

T These processes were (conservatively) evaluated at the endpoint of the nuclear recoil spectra.
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ER and NR tracks in 50 Torr CF,
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Figure 2: Left — Track length in CF4 at 50 Torr for electrons (mean projected range calculated with Degrad [48], CSDA range with ESTAR [51],
and the practical range formula from Ref. [52]), and mean projected range for carbon and fluorine ions from SRIM [49]). Right — Electronic
and nuclear energy loss rates (CSDA) along carbon and fluorine ion tracks in CF4 at 50 Torr, calculated with SRIM and electronic energy
loss for 20 keV electrons obtained with ESTAR; called out values are interim particle energies (in keV) remaining at that point in the track.
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Electron transport in 50 Torr CF,

CFy4, 50 Torr 103 CFg4, 50 Torr
D 1T D | T Townsend
0.14 I'O-l4 coefficient
I
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— velocity ! o
£ Ny S g
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Figure 17: Electron transport properties of CF4 at 50 Torr. Left — Drift velocity and diffusion. Right — Attachment and Townsend coefficients.
Nominal fields in the drift (D), transfer (T) and induction (I) regions are indicated.
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Migdal differential rates
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Figure 3: Double-differential Migdal rates for tracks contained in the OTPC from D-D (left) and D-T (right) generators. The contours are
based on the NR thresholds of 130 keV and 170 keV for C and F, respectively. The area bound by the contours encompasses 68%, 90% and
95% of the signal.
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Secondary nuclear recoils

Secondary recoils per million primary ions (TRIM) created
within 1 mm from the vertex in 50 Torr CF,, when the

: i o Qi
“visible” energy of the secondary is 5-15 keVee. How many of these look like 5-10 keV electrons? Simulate

several thousand more tracks using full chain, analyse image
and recover track lengths (R;) Can cut down to ~1 per 70,000

Primary ion Secondary ion sgcondaries, %re.taining 871% elecjcron detection efficiency
(i.e. ~1 per million primary recoils).

Fluorine Fluorine Carbon

500 keV 22,310 4,800 ~70,000

400 26,840 5,930  per million

300 36,640 7,640 (worst case)

200 56,130 1,263 . | |

170 67,040 1,418 (o] 2 G F Nustear R
Carbon Fluorine Carbon 12}

500 keV 6,250 1,210 E 1of -

400 7,950 1,610 < o O

300 11,380 2,310

200 17,310 3,700 ;

130 26,120 5,770

5 6 7 8 9 10 1 2 3 4 5 6 7 8910
Energy [keV] Range (R,) [mm]
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