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Humidity in MPGDs UM

* H,0 in gas is usually regarded as an unwanted contaminant

* Humidity in the gas can be favorable for the detector to, for example:
* Mitigate aging effects!

* Prevent glue used for detector components from drying out (e.g. ALICE TPC)

* Previous studies regarding the effects of adding humidity to the gas
composition are not comprehensive

* Especially no consensus has been reached concerning discharge stability

IM. Hohlmann et al. NIM-A 494 (2002) 179-193



https://reader.elsevier.com/reader/sd/pii/S0168900202014638?token=F1E7C49C2DFDD3C08EEE14937125A1ED5A04310D1BDE475B0D77D848593263DB542EDC07F44D022603698665E85DDBE4&originRegion=eu-west-1&originCreation=20230313104936

Humidity in MPGDs UM

The only (known to us) study of humidity influence on

GEM stability in F. Sauli et al. NIM-A 490 (2002) 177-203
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* Origin of the effect unknown

* Operational conditions should be strictly monitored


https://www.sciencedirect.com/science/article/pii/S0168900202009105

Humidity in MPGDs UM

“In terms of temperature and humidity research, these are representative: Dhali and Williams simulated the

development process of nitrogen-positive flow in parallel plates [14]; Vitello simulated the development process of the
negative flow of nitrogen in parallel plates [15]; Morrow and lowke simulated the development process of positive
streamers in air [16]. For a uniform or slightly non-uniform field, air humidity has little effect on gap breakdown voltage
[17]; for an extremely uneven field, most scholars believe that, under the influence of the electronegativity of water,
the breakdown voltage increases slightly with the increase of humidity [18,19]. However, this is not entirely the case.
Under some electrode structures, the breakdown voltage decreases with the increase of humidity [20,21]. Humidity
has a significant effect on the discharge characteristics of an air gap under a non-uniform electric field, but there is no
consistent conclusion about its influence law. Researchers at home and abroad have proposed corresponding humidity
correction methods, curves and formulas [22,23] for the influence of humidity on air gap breakdown characteristics,

and some have been accepted by the IEC standard [24] and by China’s national standard [25].”

From the Introduction to
X. Ren et al. “Effect of Environmental Parameters on Streamer Discharge in
Short Air Gap between Rod and Plate”, Energies 15 (2022) 817



Experimental Setup TUTI

* We built a dedicated setup to introduce humidity to the gas mixture in a range of 0-4000 ppmV

* This is achieved by incorporating a water-filled bubbler* into the gas system, through which gas

can be flushed at different rates

Mass flow Bubbler

,
meter Source

— Multigas —
MPGD analyzer

Rotameter Detector chamber

*We warmly thank Chilo Garabatos for many fruitful discussions on the gas system configuration



Experimental Setup
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Experimental Setup TUTI

GEM THGEM Micromegas

* Thickness: 60 um * Thickness: 470 um * Wire distance: 22 um

* Hole diameter: 50 um (70 pum) * Hole diameter: 400 um * Wire thickness: 13 um
inner (outer) (500 um for edge holes) . Gap: 128 um

* Pitch: 140 um (S), 280 um (LP) * Pitch: 800 pm

* LPI: 730




Experimental Setup

* Used sources:
* Alpha emitter (23°Pu+2*1Am+24*Cm)
Drift distance chosen to have Bragg peak close to the MPGD
* X-Ray source (Fe>>)
* Electrode currents used for calculating the gain are

measured with a picoamperemeter

* Discharges are visualized and counted with an oscilloscope

THGEM discharge

Gas vessel

Radiation source
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Gain studies

* We measure the absolute gain as a

function of the amplification voltage

* Gain = IGEMbottom/Iprimary

* No influence of humidity on the gain
is observed — Townsend coefficient

not affected
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Gain studies

* We measure the absolute gain as a

function of the amplification voltage

e Gain =

* No influence of humidity on the gain

is observed — Townsend coefficient

anode,readout/lprimary

not affected
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Gain studies

* We measure the absolute gain as a

function of the amplification voltage

* Gain = ITHGEMbottom/Iprimary

* No influence of humidity on the gain
is observed — Townsend coefficient

not affected
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Gain studies

* We measure the absolute gain as a

function of the amplification voltage

* Gain = ITHGEMbottom/Iprimary

* No influence of humidity on the gain
is observed — Townsend coefficient

not affected
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Other performance criteria

* Energy resolution:
- No significant effect of humidity on the energy
resolution is observed within the given humidity
range

- Detailed evaluation of energy resolution ongoing

e Charge-up effects:
No significant impact on characteristic time constants
is observed for different humidity levels (similar

results obtained in [1])
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https://www.researchgate.net/publication/350483296_Charging-up_Behaviour_of_MicroPattern_Gaseous_Detectors

Discharges in MPGDs

* Main source of discharges:

* Exceeding the critical charge limit (typically 109-107 e) in the @ Secondary
|
amplification region @ electron

. avalanches

[©) ®
* Development of a streamer @% A ?@‘%
o o %@ ®o
* Resulting in a spark between the electrodes, harmful to the detector ‘ @gﬁ
it ®
Igigiiron Space charge >
* Spurious discharges: avalanche electric fields

* Appears even without the radiation source

@ Streamer
[ e renemms e

* Due to local field enhancement around electrode defects, sharp edges, etc.

* These studies: only (spurious) spark discharges considered e
©
o
* Influence of geometry, source, gas composition studied Plasma

 Effect of humidity contamination inconclusivel-?

1F, Sauli et al. NIM-A 490 (2002) 177-203 2D. Xiao, Gas Discharge and Gas Insulation (2016) 12



https://www.sciencedirect.com/science/article/pii/S0168900202009105
https://link.springer.com/book/10.1007/978-3-662-48041-0

Discharge studies TUTI
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Discharge studies

TUTl

* We study the discharge probability as a

function of gain

* No hierarchy observed with the alpha

source

* Influence of humidity on discharge stability
is only observed for the GEM operated at

higher gains with the iron source
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Discharge studies

: : GEM(S) | Humidit
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Summary & Outlook TUTI

* No deteriorating effects of humidity observed in the performance

* In gain, energy resolution, and charge up

* Adding water vapor to the gas mixture improves the discharge stability at the highest fields

* No influence of humidity on the critical charge limits of a given gas mixture is observed based on the

alpha measurements

* Reduction in the rate of spurious discharges related to electrode defects or charging-up of the insulating

layers observed

* Further investigations with more MPGD structures ongoing

* More comprehensive studies of effects on energy resolution and long-term charge up underway

16



Backup
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Backup

Fe55 spectrum (Humidity=1060ppmV)
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Backup
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Backup
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FAIR

Status quo .
==l

* Recent R&D related to the Ultra HV transmission lines, and insulation of those. - .
. Xiao, Springer 2016

§ 8 T
* Humidity R&D related mainly to corona and streamer development in rod-plane air gaps X I
5 | =
i : “ ; 4 i . )
* Following D. Xiao, “Gas discharge and gas insulation”, Springer: 2 //Jr/
5
- - - - - 4 1
— With the increase of the water content in air, the photon free path is shortened % i
s |
o
— No. charged particles produced in an avalanche will be reduced and the E-field of a streamer head will be weakened 3 | | 4 ] -1
T ! i
| -
— In addition electronegative water molecules increase attachment § I §=20cm
g . | I
@
* Similar effects reported in other works on streamer propagation/breakdown, corona dev., etc. . Abmon ,d,t:f_( i B A
e Humidity f{g/m
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X. Ren et al. Energies 15 (2022) 817
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