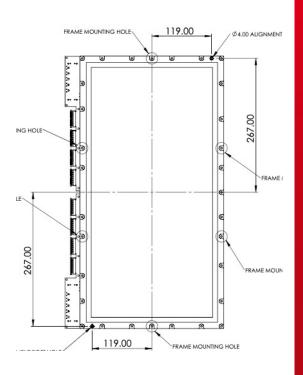
DE LA RECHERCHE À L'INDUSTRIE


LABO BULK : MICROMEGAS PRODUCTION AT SACLAY

RD51 – JUNE 2023

www.cea.fr

Maxence Vand

- News and Management
- Spring 2022 TPOT for sPhenix
- Spring 2023 RD4 prototypes
- Next steps

LABO BULK AT SACLAY

CEA Saclay MPGD production site

- 100 sq m of clean room
- Screen printing machine for resistive layer
- Machine for bulk process (lamination, insolation, etc ...)
- PCB and mecanical CAD on site
- Full mecanical workshop + 3D printers

New team to replace Stephan Aune (chef ing.) and Mariam Kebberi (Chef Tech.)

First production with TPOT and RD4

=> A lot to relearn!

TPOT: MICROMEGAS FOR SPHEN

TPOT: 10 Modules, (20 micromegas) to be produced and tested in 6 months

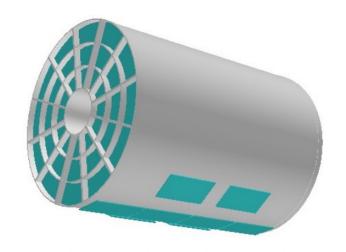
1 TPOT module is two 1D Micromegas layers (rΦ and Z)

- Design is simple
- 3mm drift
- No R&D on 2D resistive necessary

Resistive layer with strips

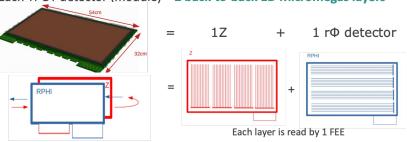
- Necessary with heavy ions environment
- Occupancy is high, strips limit cluster size
- Division in 4 HV sectors for reliability (no access after installation)

Reuse of TPC services


■ SAMPA FEE + cooling

Z Pitch is 2mm, rΦ pitch is 1mm

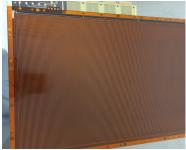
- Each layer is read by 1 FEE
- Straight strips for simplicity and low capacitance


No soldering design

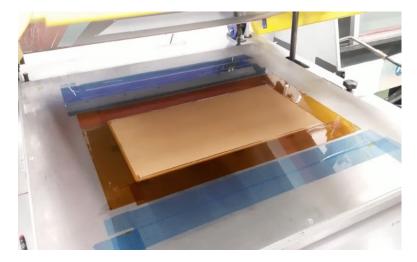
- Mec8 connectors on side of PCB (1.6mm thickness)
- HV card with FSI connectors
- Drift connections through springs in frame

DETECTOR CONFIGURATION

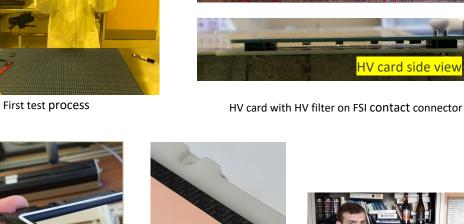
Each TPOT detector (module) = 2 back-to-back 1D Micromegas layers



FIRST PROTOTYPE



PCB at Saclay



Resistive foil pressed on PCB

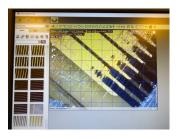
Printing resistive strips at Saclay

Frist carbon drift

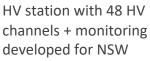
HV card side view

Frist carbon drift + happy Cyril

Prototype Prod Aug. 2021

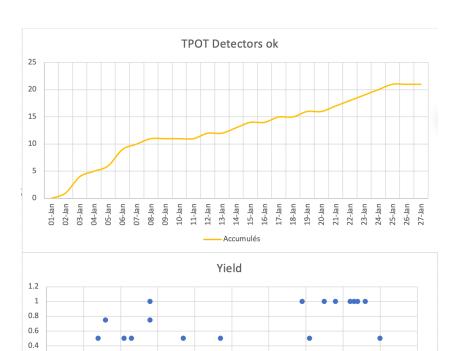


PROCESS PRODUCTION - YIELD



Improvement to fix the poor yield:

- Systematic long HV test
- Debulking
- Resistive layer removal
- Pressing on good press at CERN (thx Rui!)
- Missing pillars on design fixed during production



+> at the end we had ~90% success on the first try

09-May 19-May 29-May

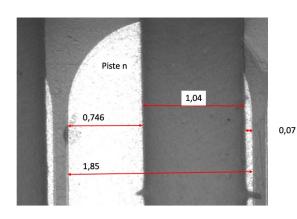
2019 Specifications 04/2021

Proto. Prod.

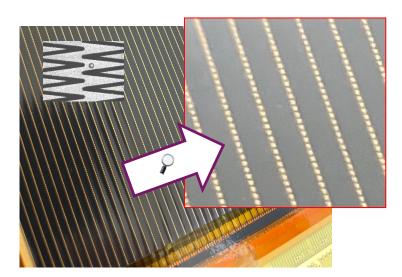
Proto. Test

Green light

0.2


Debugging

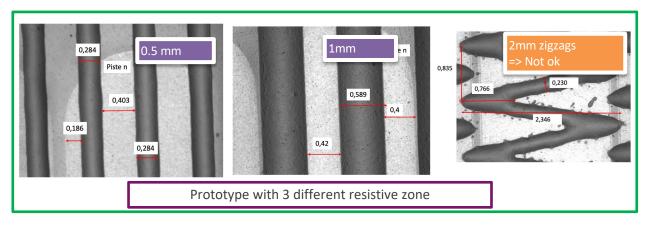
April - June 2022


TPOT RESISTIVE STRIPS

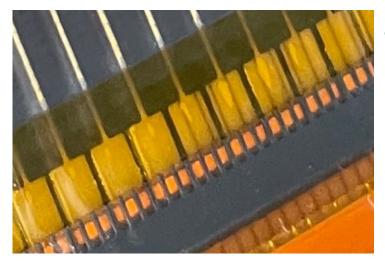
+> Prototype to test resistive layer :

- Efficiency OK 98%
- Zigzag strips too high in resistivity
- Resolution pitch dependent : ~650um for 0.5mm res. pitch

Large resistive strips over zigzag strips


02/2022: New TPOT Z Zigzag (ZZZ)

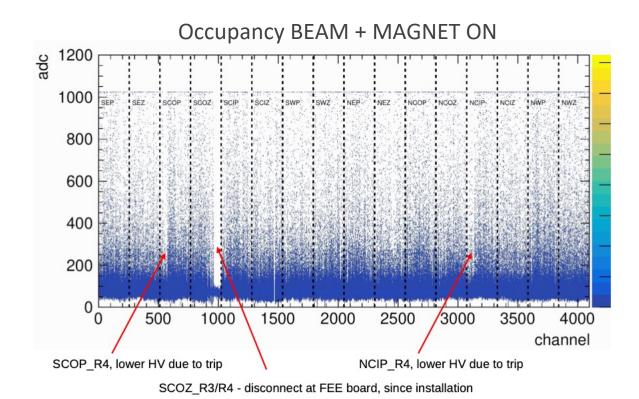
- Zigzag from LDRD program
- ⇒Efficiency OK 98%
- ⇒Resolution ~650µm



Z (2MM) RESOLUTION ISSUE

+> Resistive strips need to be the smallest possible (no resolution within a strip)

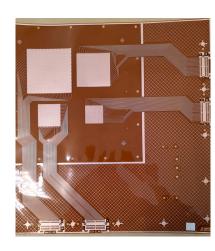
"Taille de guèpe"


+> Thinner strip at the beginning of the strips to avoid low resistivity and NSW-like instabilities

RUNNING AT RHIC

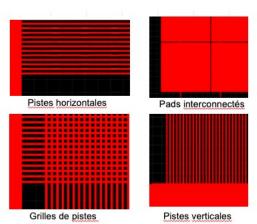
Preliminary results from H. Peirera

EIC / P2 PROTOTYPES

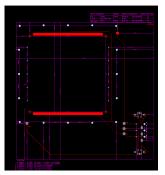

~ 15 10x10cm Micromegas with different readout / amplification

Common platform for light weight MGPDs with :

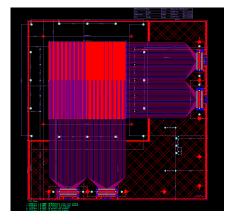
Different readouts: 2D pads, strips, 2D strips Different MPGD: plain resistive mm, strips resistive mm, URWELL, metallic mm


Micromegas on single Kapton Foil feasible :

After a few test, good yield with 3/3 ok for metallic MM (with a few features) Works on pressed Resistive Layer on readout (2x Kapton foils) All kapton done at CERN



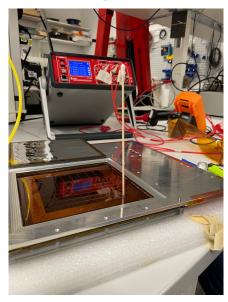
With this, we get 0.2% of X0 per layer (Gas and Drift made of Mylar foil)

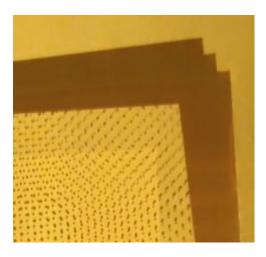

Resistive Patterns

Amplification Kapton

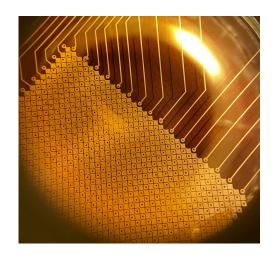
Readout Kapton




EIC / P2 PROTOTYPES ISSUES


First Bulk tests:

Un-bending metallic mm


Mask misalignments

RD4 assembled

Broken vias

RD4 installed

EIC / P2 PROTOTYPES ISSUES

Test beam @Mainz:

+> RD4 production (2 weeks)

- 3/3 P2 metallic
- 3/3 Urwell (really easy)
- 3/5 Resistive mm

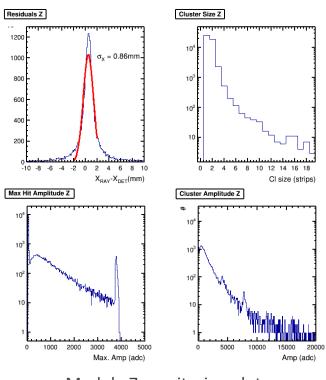
=> Not perfect prod done in full panic mode, next detectors should be better

As a conclusion

- Saclay bulk lab is up and running after a team change
- New engineer should arrive in September at 50%
- Next production : mulitgen for tomography and NBLM

On the R&D side

- Waiting for the test beam analysis
- Try to bulk on DLC layer
- Kapton includes amplification layer to avoid pressing



PRODUCTION MODULE QC WITH COSMIC RAYS

Module 3

Module 3

Module 3

Module 4

Module 5

Module 5

Module 6

Module 7

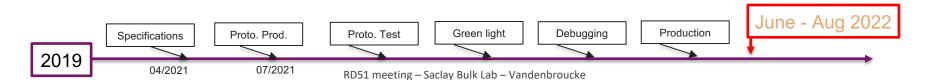
Module 7

Module 8

Module 8

Module 9

Module


Module	1	2	3	4	5	6	7	8	9
RPHI eff		98 %	98 %	99 %	99 %	98 %	99 %	99 %	99 %
Z eff		98 %	98 %	98 %	99 %	98 %	98 %	98 %	98 %
Module eff		97 %	97 %	97 %	97 %	96 %	97 %	97 %	97 %
Gas leak	0.03L/h (detection limit of the setup)								

Module 7 monitoring plots

+> Shipping to BNL in two batches in August 2022

Operating points for testing: Ar/iC4H10 95/5 Drift HV: -200V

Amplification HV: +420V

