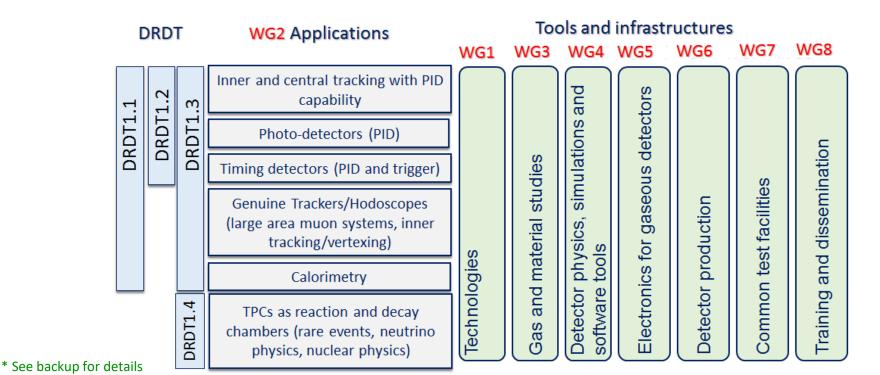


Introduction to the DRD1 Work Packages

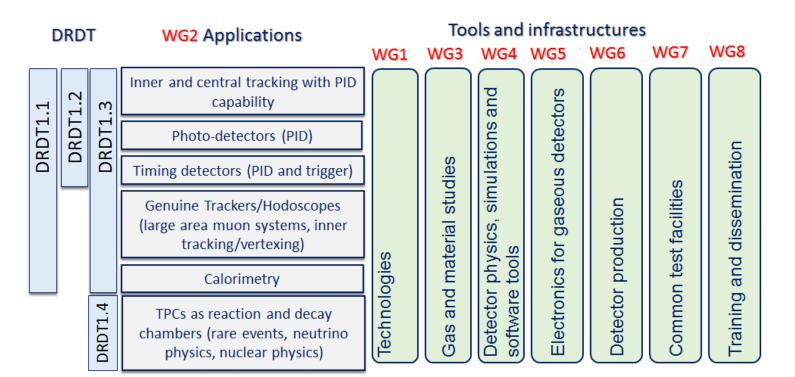
(on behalf of DRD1 WG2 conveners and WP coordinators)


RD51 Collaboration Meeting 19 June 2023

DRD1 structure

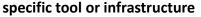
2

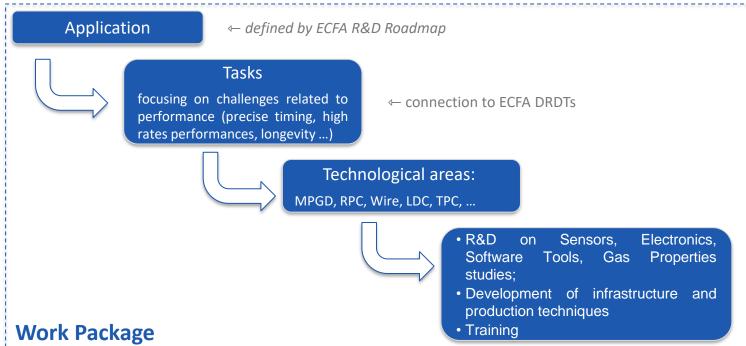
- Structure in Working Groups, forum for scientific discussions, coordinated by conveners:
 - aligned with the scientific program of the ECFA roadmap through the applications related to future facilities challenges,
 outlined by R&D Themes (DRDTs*), but also to the GSRs* (General Recommendation Strategies)



Digression

3

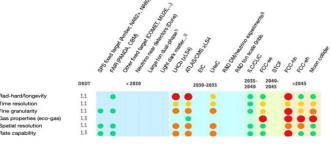

- Where, in the DRD1 scheme, current RD51 WG2 (Detector Physics and Performance)?
- Shared between WG1/WG2/WG3/WG4 topics ?



Work Packages

- Strategic R&D (according to the ECFA Detector R&D Roadmap) is organized in Work Packages
 - group activities of the Institutes with shared research interests around Applications with a focus on a specific task(s)
 devoted to a specific DRDT challenge, typically related to specific Detector Technologies and to the development of

DRDT Applications Milestones/interested Link to WG activities institutions Task1 – Milestones, Institutions Inner and central tracking with PID Tools/infrastructures (WGs) Task2 – Milestones, Institutions capability ŝ 2 ω • DRDT1. RDT1 DRDT1 Task1 – Milestones, Institutions Photo-detectors (PID) Tools/infrastructures (WGs) Task2 – Milestones, Institutions • Timing detectors (PID and trigger) Tools/infrastructures (WGs) Task1 – Milestones, Institutions Task2 – Milestones, Institutions Genuine Trackers/Hodoscopes • (large area muon systems, inner Tools/infrastructures (WGs) Task1 – Milestones, Institutions tracking/vertexing) Task2 – Milestones, Institutions • Tools/infrastructures (WGs) Calorimetry Task1 – Milestones, Institutions Task2 – Milestones, Institutions 4 • TPCs as reaction and decay Tools/infrastructures (WGs) DRDT1. Task1 – Milestones, Institutions chambers (rare events, neutrino Task2 – Milestones, Institutions physics, nuclear physics) •


WP1: Genuine trackers/hodoscopes

(large area muon systems, tracking/vertexing)

Challenges/tasks

6

- extend state-of-the-art rate capability and longevity by minimum one order of magnitude or more in the highest eta region (up to an order of MHz/cm²)
- enable detectors reliably and efficiently working with suitable low GWP mixtures
- reaching the two objectives above can be favored in 3 ways:
 - low noise electronics integrated in a highly stable and noise immune Faraday cage
 - new detector geometries increasing the signal collection yield
 - use of innovative resistive material for suppressing discharges on the electrodes.
- Time resolution O(20ps) for timing applications and of 200-300 ps to identify the BC in a very high rate collider, to help in cutting the pile up and to boost the ability to measure particle velocity
- large series industrializes production

WP1: Genuine trackers/hodoscopes

(large area muon systems, tracking/vertexing)

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3 y	Interested Institutes
Τı	New resistive RPC ma- terials and production techniques for resistive layers	 Develop low-cost resistive layers Increase rate capabil- ity 	WG3 (3.1C, 3.2D), WG6, WG7 (7.1- 5)	1.1, 1.2	HPL, low resistivity glass Semiconductors Printed resistive pat- terns DLC-sputtered electrodes for surface- dissipation in RPCs	 Design, con- struction and test of prototypes with new produc- tion techniques 	INFN-RM2, INFN-PD, INFN-BO, U Kobe, INFN-PV, WIS, INFN- LNF, CERN, IPPLM, U Bolu-Abant, U Cambridge, HYU
T2	New resistive MPGD structures	 Stable up to gains of O(10⁶) High gain in a single multiplication stage High rate capabil- ity (1 MHz/cm² and ke- yond) High tracking perfor- mance 	WG3 (3.1C, 3.2D), WG4, WG6, WG7 (7.1- 5)	1.2	- High-rate DLC layout for micro-RWELL	 Design, con- struction and test of prototypes with new resistive materials Modelling and Simulation (sig- nal induction) MPGD proto- types based on resistive elements for tracking 	USTC, INFN-PD, INFN-NA, INFN-RM3, INFN-E, INFN-FE, INFN-PO, UNFN-BO, UKobe,WIS, IRFU/CEA, IPPLM, LMU, U Bolu-Abant, CERN
	2D readout optimiza- tion	 Development of low- granularity 2D-readout with high tracking per- formance 			 Layouts based on low resistivity DLC film and charge sharing 	 Design, con- struction and test of prototypes with low-granularity 2D-readout 	INFN-LNF
Τ3	New front-end electron- ics	 I C threshold High-sensitivity electronics to help achieving stable and efficient operation up to ≈MHz/cm² 	WG5, WG7 (7.1,2)	1.1	Integration of PEE in the detector Faraday cage Integration of elec- tronics and readout PCB	 Conceptual electronics design based on gas de- tector simulation and experimental measurements Development and test of a front- end prototype High throughput multichan- nel FE (peak time/amplitude based VMM3a); performance studies and opti- mization. 	IFIN-HH, INFN-BA, INFN-BA, INFN-TO, IRFU/CEA, IPPLM, INFN-RM2, U Cambridge, CERN
T4	Optimization of scal- able multichannel read- out systems	 Front-end link con- centrator to a power- ful PPOA with possibil- ities of triggering and ≈20 GBit/s to DAQ 	WG5	1.1, 1.2	- FPGA-based architec- ture - FPGA with embedded processing for trigger- ing and ML - Basic firmware and software can be boot- strapped from existing readout system	 First prototype by the end of 2024 for com- missioning at test beam SRS/VMM3a Readout: Contin- uous and trigger mode, distributed systems, syn- chronization with other DAQs. 	IFIN-HH, INFN-BO, U Bonn, IPPLM, CIEMAT, CERN

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3 y	Interested Institutes
T5	Eco-friendly gases	 Guarantee long-term operation Explore compatibility and optimized operation with low-GWP gases 	WG3 (3.1A, 3.1B, 3.2C), WG4, WG7 (7.1- 4)	1.1	 Ageing studies Leak miligation and maintenance of existing systems Gas simulation: drift velocity, diffusion 	- Test and char- acterization of gascous-detection technologies with low-GWP gases (broadly)	U Oviedo, CERN, U Wurzburg, INFN-BA, INFN-BA, INFN-BA, INFN-BO, INFN-PV, IRFU/CEA, U Coimbra, VUB and UGent, IP- LM, LMU, U Aveiro, INFN- RM2, Istinye U, HYU
T6	Manufacturing	 Construction of large- area detectors at low cost Modular design Technology transfer strategy and training center for production 	WG3 (3.2E), WG6, WG8	1.3	Optimization of the manufacturing pro- cedure to minimize time-consuming or costly steps	 Design and manufacturing of large-area detector Large-area DLC production CERN: MPGD based manufac- turing capabilities and large-area modules (design and prototyp- ing). Note: MPT Workshop 	U Heidel- berg, USTC, WIS, GSI, INFN-NA, INFN-LNF, INFN-LNF, INFN-LNF, INFN-LNF, UW-Madison, IPPLM, LMU, INFN-RM2, Istinye U, Wigner, CERN
T7	Thinner layers and in- creased mechanical pre- cision over large areas	- Test to experience the ultimate limits to thin- ning down the detector	WG3 (3.2E), WG5, WG7 (7.1,2)	1.3			INFN-BA, INFN-LNF, IPPLM, LMU, INFN-RM2
T8	Longevity on large de- tector areas	 Study discharge rate and the impact of irra- diation and transported charge (up to C/cm²) 	WG1, WG3 (3.1B, 3.1D, 3.2B), WG4, WG7 (7.1,3)		- Discharge probability - Ageing		WIS, INFN- NA, INFN- RM3, INFN- LNF, IRFU/CEA, U Coimbra, IPPLM, LMU, INFN-RM2, INFN-BO
19	Low-mass MPGDs for inner-tracking at low- energy ee colliders	 development of low- mass planar cylindrical mechanics 	WG5		 low-mass cylindrical micro-RWELL for In- ner tracker 	- Prototype test	INFN-LNF
T10		 256 channel readout 100 W or less 1200 cc DAQ volume Rugged design for remote (<1 km), e.g. underground operations 	WG5		- Muon rates from few Hz to few events per day.	 Deployed and tested at depth 	OXY


7

WP2: Inner and central tracking with PID

(DRIFT CHAMBERS)

Challenges/tasks

• Mechanics: new wiring procedures, new wire materials

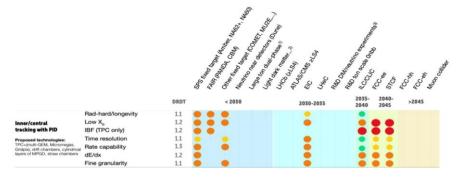
High gas gains ~5×10⁵, required for the application of the cluster counting techniques, high granularities (small cell size, order of 1 cm), long wires (order of 4-5 m) and electrostatic stability demand studies on new light materials with high YTS for wires.

• Electronics: on-line, real time data processing algorithms

Waveform digitizers, signal processing for cluster counting exploiting new data processing algorithms

• Hydrocarbon-free gas mixtures / recirculating gas systems

Safety requirements (ATEX) on flammable gases and ever-increasing costs of noble gas


#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	Development of front-end ASICs for cluster count- ing	 High bandwidth High gain Low power Low mass 	WG5, WG7 (7.2)	1.1, 1.2	 Achieve efficient clus- ter counting and cluster timing performances 	 Full design, construc- tion and test of the first prototype of the front- end ASIC for cluster counting 	IHEP CA3 CNRS-LSBB INFN-RM1, INFN-LE, INFN-PD, INFN-BA, INFN-TO, SBU, IPPLM
T2	Develop scalable multichannel DAQ board	 High sampling rate Dead-time-less DSP + filtering Time stamping Track triggering 	WG5, WG7 (7.2)	1.1, 1.2	 FPGA-based architec- ture ML algorithms-based firmware 	 A working prototype of a scalable multichan- nel DAQ board 	IHEP CA INFN-LE, INFN-BA, UW-Madison IPPLM, INFN-BO
T3	Mechanics: de- velop new wiring procedures and new end-plate concepts	 Feedthrough- less wiring More transpar- ent end-plates (X < 5%X₀) 	WG3 (3.1C)	1.1. 1.3	 Separate the wire sup- port function from the gas containment func- tion 	 Conceptual designs of novel wiring procedures Full design of innova- tive end-plate concepts 	USTC, GANIL, CNRS- IN2P3/JICLa CNRS-LSBE GSI, MP INFN-RMI, INFN-LE, INFN-BA, INFN-PD, CERN, PPS U Manchesto SRU Winner
T4	Increase rate ca- pability and gran- ularity	- Smaller cell size and drift time - Higher field-to- sense wire ratio	WG3 (3.2E), WG7 (7.2)	13	 Higher field-to-sense wire ratio allows in- creasing the number of field wires, decreasing the wire contribution to multiple scattering 	 Performance evalua- tion on drift-cell proto- types at different granu- larities and with differ- ent field configurations 	USTC, CNR IN2P3/JJCLa CNRS-LSBE MPP, Bos INFN-RMI, INFN-LE, INFN-BA, CERN, PS U Bursa, Manchester, SBU, INF? BO
T5	Consolidate new wire materials and wire metal coating	Electrostatic sta- bility High YTS Low mass, low Z High conductiv- ity Low ageing	WG3 (3.1C)	1.1, 1.2	 Establish contacts with companies produc- ing new wires Develop metal coating of carbon wires 	- Construction of a mag- netron sputtering facil- ity for metal coating of carbon wires	GSI, CNR: IN2P3/IJCLa CNRS-LSBB INFN-RM1, INFN-LE, INFN-BA, CERN, PS U Mancheste SBU, INFY BO
10	nomena for new wire types	charge-collection limits for carbon wires as field and sense wires	(3.2B), WG7 (7.3,4)	1.2	- Build prototypes with new wires as field and sense wires	 Prototype tests in- beam and at irradiation facilities Measurement of per- formance and depen- dence on total inte- grated charge 	IN2P3/IJCLa INFN-RM1, INFN-LE, INFN-BA, INFN-BO
17	Optimize gas mixing, recupera- tion, purification and recirculation systems	Use non- flammable gases Keep high quenching power Keep low-Z Increase radia- tion length Operate at high ionization density	WG3 (3.1B, 3.2C), WG4, WG7 (7.4)	1.3	 ATEX and safety requirements Attention to the cost of gas Hydrocarbon-free mixtures 	Study the performance of hydrocarbon-free gas mixtures Implement a complete design of a recirculating system	MPP, INF RM1, INF LE, INFN-B, PSI, U Burs SBU, IPPLM U Aveir Wigner

WP3: Inner and central tracking with PID

(STRAW CHAMBERS)

9

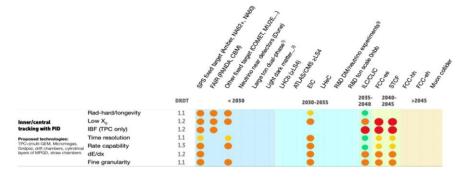
Challenges/tasks

- Mechanics: thinner, smaller diameter, longer straw tubes / mechanical stability 6+6 μm mylar + 3 μm glue wound-type or 25 μm seamless (resistive) type, few mm diameter, several m length /self-supporting structures
- Material studies

Creep under tension (tension relaxation), gas leakage (operation under vacuum or overpressure)

Electronics

Leading and trailing time resolution for 4D measurements and for dE/dx with time over threshold


	#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
	TI	Optimize straw materials and technology	Develop thin films and metallization Resistance to ageing Low cross-talk Establish material re- laxation control Gas leakage control Compatible with oper- ation in vacuum	WG1, WG3 (3.1C, 3.2B), WG6, WG7 (7.1- 4)	1.1 1.2 1.3		 Design and pro- duction of materi- als Production of straw tubes 	CERN, JU- Krakow, U Manchester, U South Carolina, U Hamburg
	T2	Develop small- diameter straw tubes (< 4 mm) for highest rate capability	 Rate capability >500 kHz/cm² Fast timing (<50ns) Charge load >10 C/cm 	WG1, WG7 (7.1- 3)	1.1 1.2 1.3	Wire centering Electrostatic stability Establish assem- bly techniques and tools - Ultrasonic- welding PET Straw tracker mechanics	 Straw materials and tube design Film tube pro- duction Establish the technique for straw-tube assem- bly Prototype setup with several channels 	
y		Develop straw tubes of 5 mm- diameter	- Faster timing (<100 ns) - High rate capability, O(100 kHz/cm ²)					MPP, HUJI, INFN-PV, AGH- Krakow, JU- Krakow, CERN, U Bursa, U Manchester, U South Carolina, KEK-IPNS
		Develop ultra- thin film walls	- < 20 μ m thickness - $X/X_0 \sim 0.02\%$ per straw - Film metallization - New film materials and new technologies (e.g. nano-fibre)					INFN-PV, JU- Krakow, U Manchester, U South Carolina, KEK-IPNS
		Develop ultra- long straws (up to 4 m)	 Establish good me- chanical properties 					HUJI, INFN-PV, JU-Krakow, CERN, U Manch- ester, U South Carolina, INP- Almaty, U Hamburg
	Т3	Optimize straw tracker mechanics	 Develop self- supporting modules Control relaxation Develop a method for straw alignment 	WG1, WG3 (3.2E), WG6, WG7 (7.1)	1.1 1.2 1.3	 Design of all mechanical tools QA 	 Develop assem- bly technique Prototype con- struction 	HUJI, JU- Krakow, CERN, U Bursa, U Manchester, FZJ- GSI-U Bochum, U Hamburg, U South Carolina, IFIN-HH

WP3: Inner and central tracking with PID

(STRAW CHAMBERS)

10

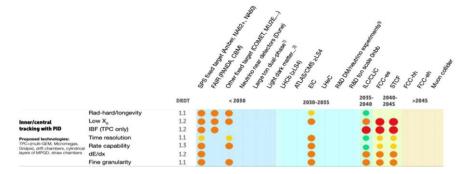
Challenges/tasks

- Mechanics: thinner, smaller diameter, longer straw tubes / mechanical stability 6+6 μm mylar + 3 μm glue wound-type or 25 μm seamless (resistive) type, few mm diameter, several m length /self-supporting structures
- Material studies

Creep under tension (tension relaxation), gas leakage (operation under vacuum or overpressure)

Electronics

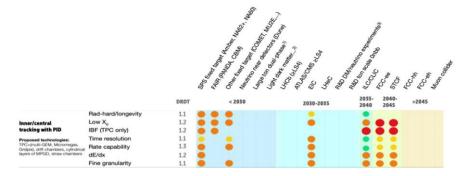
Leading and trailing time resolution for 4D measurements and for dE/dx with time over


threshold

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
T4	Optimization of electronic readout and ASIC devel- opment	 Time readout with sub-ns precision Leading and trailing edge time readout 	WG5, WG7 (7.1- 2)	1.1	- Dedicated R&D on ASIC	 ASIC development Development of readout system 	INFN-PV, MPP, HUJI, JU-Krakow, AGH-Krakow, CERN, U Bursa, U Manchester, U South Carolina, INP-Almaty
15	3D/4D-Tracking and PID via dE/dx	 Spatial resolution <150 μm T₀-determination with ≈ns resolution p/K/π-separation at p<i c<="" gev="" li=""> </i>	WG1 WG4 WG7	1.1		 Development of SW algorithms Analysis of (in- beam) test data 	MPP, INFN-LE, INFN-PV, AGH- Krakow, JU- Krakow, CERN, U Manchester, Istinye U, FZJ- GSI-U Bochum, INP-Almaty, U Hamburg
T6	Longevity	 Ageing resistance > 1 C/cm for thin-wall straws Ageing resistance > 10 C/cm for straws and highest particle rates 	WG1, WG3 (3.2B), WG7 (7.2)	1.1	Test at various DRD1 test facili- ties	Prototype mea- surements	CERN, JU- Krakow
17	Software	 Straw tube simulation and calibration Event simulation Pattern recognition Tracking and PID Tracker alignment 	WG4	1.1, 1.2	- Garneld, Geant - Alignment, e.g. Millepede - Real-time pro- cessing	- Development of new analysis al- gorithms and ap- plications to (in- beam) test data	PZJ-GSI-U Bochum, CERN, U South Carolina, INP-Almaty, U Hamburg, U Aveiro, Istinye U, IFIN-HH

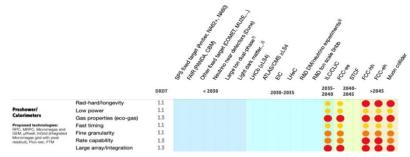
WP4: Inner and central tracking with PID

(LARGE VOLUME TRACKING TPCS)


- · High rate,
- · Low mass,
- Granularity,
- dE/dx & cluster counting
- Ion backflow suppression,
- Gas mixture optimization and Eco gas mixtures

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	IBF reduction	- Gain×IBF ≈ 1- 2 - IBF optimiza- tion together with energy resolution and discharge sta- bility	WG4, WG7 (7.1- 2,5)	1.2	 Hybrid stacks Gating GEM Distortion corrections Space-charge monitoring Development of simulation tools Operation in magnetic fields 	 Provide a large-area pro- totype with a uniform IBF distribution of G*IBF=5 keeping the energy resolu- tion at a tolerable level Present a structure with stable settings for G×IBF of 1-2 Determine the ion block- ing power of a GEM-based gate Provide systematic stud- ies and simulations of IBF performance for the most common structures in (high) magnetic fields Introduce an IBF calcu- lator (Garfield-based) for optimization of the HV parameters 	IFUSP, GSI, U Bonn, IRFU/CEA, USTC, KEK- IPNS, DESY, GANIL, RWTH Aachen, INFN-PD, IP- PLM, CERN, PSI, U Bursa, SBU, WIS, U Coimbra, U Aveiro, Wigner, SINP Kolkata
T2	Pixel-TPC de- velopment	 Produce 50000- 60000 GridPixes to read out a full TPC Achieve dN/dx counting- resolution < 4% 	WG5, WG7 (7.1- 2,5)	1.1	 InGrids (grouping of channels) Low-power FEE Optimization of pixel size (>200 µm) or cost reduction 	 Provide a large-area pixel-based (InGrid) read- out module Measuring IBF for Gridpix. Reduction with double-mesh Present dN/dx measure- ments in beam Small area prototypes of MPGD/TimePix hybridis- ation. 	U Bonn, U Carleton, WIS, CERN
Τ3	Optimization of the am- plification stage and its mechanical structure, and development of low X/X_0 field cages (FC)	 Uniform re- sponse across a readout uni-area. Keep σ_{4E/4}× 4% Point resolution of <100 µm Minimize static distortions by re- ducing insensitive areas Minimize E×B Achieve E-field homogeneity at ~10⁻³ level 	WG1, WG4, WG6, WG7 (7.1- 2,5)	1.1 1.2	Minimization of static distortions: - Algorithms for dis- tortion corrections - Field shaping wires - Minimize GEM frame area (use thicker GEMs) - Laser systems Main ampl. stages: - Encapsulated resistive-anode MMG - Multiple GEM - GridPix - Hybrids FC: - high-quality strips, suspended strips - module flatness	 Provide a solution for a large-volume TPC with Q(10⁶) pad-readout by means of pre-production of several readout modules of comparable quality 	IRFU/CEA, U Bonn, IHEP CAS, USTC, GANIL, CNRS- IN2P3/JICLab, GSI, RWTH Aachen, INFN-RMI, INFN-RMI, INFN-BA, IPPLM, PSI, U BURS, SBU, BNL, WIS, IFAE

WP4: Inner and central tracking with PID


(LARGE VOLUME TRACKING TPCS)

- · High rate,
- · Low mass,
- Granularity,
- dE/dx & cluster counting
- Ion backflow suppression,
- Gas mixture optimization and Eco gas mixtures

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
T4	Low-power FEE	- <5 mW/ch for >10 ⁶ pad TPC - ASIC de- velopment in 65 nm CMOS	WG5	1.3	- Continuous vs. pulsed	 Present stable opera- tion of a multi-channel TPC prototype with a low- power ASIC 	IHEP CAS
T5	FEE cooling	- Operate 10 ⁶ channels per end-plate	WG5	1.2	Two-phase CO ₂ cooling Micro-channel cooling with 300 µm pipes in carbon fiber tubes 3D printing: com- plex structures, performance opti- mization, material selection	 Present a prototype of a cooling system for the 10⁶ pad TPC option 	IRFU/CEA, U Lund, INFN- PI, INFN-LE, INFN-PD
T6	Gas mixture	Optimize: - Longevity - Ageing - Discharge prob- ability - Drift velocity - Ion mobility	WG1, WG3 (3.1D, 3.2A, 3.2B), WG4, WG7 (7.1- 3,5)	Ш	 Discharge probability, ageing, gas properties Optimization of the HV working point Optimization wrt. the expected resolution (aim for <100 µm) Cluster ions 	 Lower the discharge probability of readout units by 1-2 orders of magnitude down to ~10⁻¹⁴ per hadron Avoid secondary dis- charges in MPGD stacks 	CERN, IFUSP, GSI, TUM, IHEP CAS, GANIL, USTC, CNRS- INEPUZICLA, IRFU/CEA, CNRS-LSBB, RWTH Aachen, U Bonn, Bose, INFN-RMI, INFN-LE, INFN-BA, IPFUM, USC/IGFAE, U Bursa, SBU, U Aveiro, U

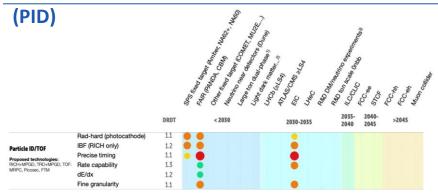
WP5: Calorimetry

Challenges to develop large detector area

- Uniformity of the response and dynamic energy range
- Rate capability (x resistive material detector): 1 kHz/cm²
- Time resolution O(100ps)

Not necessarily for large-area:

- + Eco-gas mixture
- + Stable performance (gas gain, time resolution, etc)
- + High radiation hardness

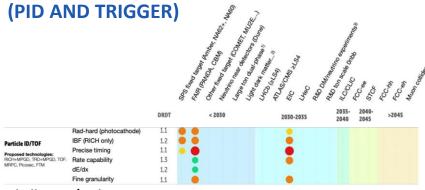

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
T1	Development of high-granularity demonstrators	 Cell size ≈1 cm² Channel count ≈10k per m² 	WG5, WG7 (7.2)	1.1	- Innovative signal- induction structures to balance readout cost and performance - Front-end electronics	- Performance validation of a technology demonstrator in- beam	VUB and UGent, IP2I, MPP, WIS, INFN-RM2, CERN, INFN-RM3, INFN-BA, INFN- LNF, CIEMAT, Istinye U, U Cambridge
T2	Gas Studies	- Gas mixture operation with low environ- mental impact (low-GWP)	WG3 (3.1B, 3.2C), WG4, WG7 (7.1-4)	1.1,1.3	 Improvement of recuperation and recirculation systems Longevity studies Ecological gas mixtures without F-gases 	 Performance stability results with lower % of fresh gas Identification of an eco- gas mixture with performance comparable to the standard one 	VUB and UGent, IP2I, MPP, INFN-RM2, CERN, U Bursa, WIS, IPPLM, CIEMAT, U Aveiro, Istinye U
Т3	Mechanics opti- mization	- Uniform re- sponse over large surface ≈1-2 m ²	WG3 (3.2E), WG7 (7.1-2)	1.1	Optimization of de- tector structures to minimize dead area Development of large-scale MPGD construction techniques Production of high planarity, large-area PCBs for MPGDs Mechanical fabri- cation of very thin High-Pressure Lami- nate and glass RPCs Uniform resistivity Uniform gas gain	Construction of a first full- scale prototype and perfor- mance assessment Establish QC and QA proce- dures for mass production	VUB and UGent, IP21, MPP, INFN-RM2, IFIN-HH, USTC, INFN-RM3, WIS, CIEMAT, Istinye U

Technologies:

RPC, Micromegas, GEM, RWELL/RPWELL, micro-RWELL, gridPix, PICOSEC, FTM.

CERN

WP6: Photo-detectors



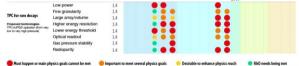
- Preserve the photocathode efficiency by IBF and more robust photoconverters
- Very low noise, large dynamic range of the FEE
- Separate the TR radiation and the ionization process

#	Task	Performance	DRD1	ECFA	Comments	Deliv. next 3y	Interested Insti-
		Goal	WGs	DRDT			tutes
11	Increase photo- cathode efficiency and develop ro- bust photocon- verters	Improve: - Longevity - QE - Extend to the visible range - Rad-hardness up to 10 ¹¹ n _{eq} /cm ²	WG3 (3.1C), WG6, WG7 (7.1-4)	1.1	 Study frydrogenated nanodiamonds Study diamond-like earbon (DLC) 	 Demonstrate the performance of nanodiamond- powder photocathodes in terms of their chemical reac- tivity and ageing Provide a detailed char- acterization of QE of new photocathode materials, e.g. DLC 	INFN-TS, CERN, HIP, IRFU/CEA, NISER Bhubaneswar, U Coimbra, LMU, U Aveiro, RBI, Wigner
T2	IBF suppression, discharge protec- tion	 IBF reduction down to 10⁻⁴ and below Stable, high gain operation up to 10⁵-10⁶ Operation in magnetic field 	WG4, WG7 (7.1,5)	1.2	 Multi-Micromegas de- tectors Zero IBF detectors New structures (Co- bra, M-THGEM, and coating materials (Mo) Grids: bi-polar grids, gating GEM 	 Demonstrate a small-area new structure or stack of structures providing stable op- eration at high gains and low IBF performance 	USTC, INFN-TS, INFN-PD, INFN- PV, TUM, WIS, U Bonn, HIP, IRFU/CEA, NISER Bhubaneswar, CERN, MSU, SBU, JLab, BNL, U Coimbra, IP- PLM, U Aveiro, RBI
13	oas stuores	 Develop eco- friendly gas radiators and, in particular, ex- plore alternatives to CF4 	wG3 (3.2A), WG4, WG7 (7.2,4)	, 1.3	Identification of eco- friendly gas mixtures free from greenhouse gases Alternatives to CF4 for optical readout		CERN, NISER Bhubaneswar, HUJI, GSSI, INFN-PD, INFN-TS, AGH- Krakow, IPPLM, USC/IGFAE, U Aveiro
T4	FEE	Stability at high input capacitance - Low noise - Large dynamic range	WG5	1.2		- Present an ASIC con- cept/prototype	IFUSP, NISER Bhubaneswar, INFN-PD, INFN-TS, AGH- Krakow, IPPLM, U Manchester, MSU, SBU, JLab, DIPC
T5	Enhance mechan- ics	 High-pressure operation Improve gas tightness 	WG6	1.3			NISER Bhubaneswar, HUJI, GSSI, USC/IGFAE, CERN, MSU, JLab, DIPC, IPPLM, RBI
Т6	Precision mea- surements	 Time resolution ≤ 100 ps Spatial resolution ≤ 1 mm 	WG7.2		- MPGD: PICOSEC		CERN, IPPLM

WP7: Timing detectors

- Uniform rate capability, time resolution, and efficiency over large detector area
- New material for high rate (low res., rad.hard.): uniform gas distribution, spacer material, spacer geometry, thinner structures: mechanical stability and uniformity
- Eco-gas mixture, Gas recuperation systems
- Electronics: Low noise, fast rise time, sensitive to small charge

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	Optimize the amplification technology	- Uniformity over m ² (time resolu- tion, rate capabil- ity, efficiency)	WG1, WG6, WG7 (7.1- 2,4)	1.1-1.3	- PICOSEC - Position-sensitive timing RPC - Ultra high-rate timing RPC development - DLC-based timing RPC - GaAs timing RPC - GaAs timing RPC - Resistive Cylindrical Chamber RCC	- Provide a large-area, multi- channel prototype of an MPGD- based timing detector	CERN, IRFU/CEA, U Soha USTC, HIP, GANIL, IP2I MPP, U Heidelberg, NCSB Demokritos, INFN-BX, INFN-PD, INFN-PV, LIP Coimbra, U Bursa, MSU SBU, JLab, U Hamburg, RBI U Tsinghua, INFN-RM2
T2	Enhance timing	- Time resolution < 20 ps up to 30 kHz/cm ²	WG3 (3.2A, 3.2D), WG4, WG7 (7.2)	1.1	MPGD:PICOSEC	- Present large area MPGD timing detector capabilities in beam	CERN, IRFU/CEA, USTC HIP, GANIL, IP2I, MPP NCSR Demokritos, INFN PD, INFN-PV, U Bursa, SBU JLab, MSU, UW–Madison, U Hamburg, RBI
T3	Enhance rate ca- pability	- Time resolution < 50 ps up to 100- 150 kHz/cm ²	WG3, WG4, WG7 (7.2)	1.3	RPC: - Gap thickness - Number of gaps - Thin, low-R glass - Single cell layout - GaAs timing RPC - Resistive Cylindrical Chamber RCC PICOSEC: use at high rate	- Provide a pro- totype for >100 kHz/cm ² rate ca- pability	CERN IRFUCEA, U Sofia, USTC, HIP, GANIL IP21, MPP, U Heidelberg NCSR Demokritos, INFN BA, INFN-PD, INFN-PV LIP-Coimbra, U Bursa, U Manchester, MSU, SBU JLab, CIEMAT, VUB and UGent, Istinye U, INFN-RM.
14	Material studies	- Kad-hardness - Longevity	wG3, WG7 (7.3,4)	1.1-1.3	- Low-resistivity glass - Spacers - Photocathodes - Photoconverters - GaAs - HPL or phenolic glass		INFN-PV, CERN, USIC RBI, MPP, U Heidelberg, U Manchester, RBI, INFN-RM.
T5	Low-noise FEE	High input capacitance Large dynamic range Fast rise time Sensitivity to small charges Low noise	WG5	1.2		 ASIC de- sign - Full readout-chain for multichannel readout solutions for timing ≈10 ps (discrete and ASICs) 	USTC. IP2I, IRFU/CEA GSI, MPP, INFN-PD, INFN PV, LIP-Coimbra, CERN U Manchester, MSU, SBU JLab, INFN-TO, RBI, U Tsinghua, INFN-RM2
T6	Space charge ef- fects, IBF and sta- bility		WG4, WG7 (7.1- 2.5)		 Simulations High gain operation Synergy with trackers and TPCs 		CERN, GSI, U Aveiro, U Ts inghua
T7	Gas studies	Eco-friendly mixtures Recuperation Ageing CO ₂ based mixture with geometrical quenching	WG3 (3.2A, 3.2B, 3.2C), WG7 (7.2-4)	1.3	 Low-GWP solutions for saturated-avalanche operation 	- Gas mixtures for MPGD(PICOSEC) based timing detectors (re- placement of Ne, CF4, C2H6)	U Sofia, USTC, HIP, GANIL IP2I, MPP, U Heidelberg INFN-BA, INFN-PV, LIP Coimbra, CERN, MSU, SBU JLab, LMU, U Aveiro, INFN RM2



WP8: TPCs as reaction and decay chambers

(RARE EVENTS, NEUTRINO PHYSICS, NUCLEAR PHYSICS)

- Reconstruct low-energy nuclear tracks (down to 10 keV energy-scale) with high granularity and close to the thermal diffusion limit.
- · Low energy threshold (keV or less) far from atmospheric pressure (10mbar-20bar).
- Achieving high and uniform amplification in nearly pure or weakly-doped noble gases
- · Increasing optical throughput (primary and secondary)
- Developing more suitably scintillating and/or eco-friendly gas mixtures as well as recuperation systems;
- · Enhancing the radiopurity of the amplification structure and of the TPC as a whole

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
T	Enhanced oper- ation of optical readout across gas densities	 Achieve ain ionization-energy threshold of atte- east s-keV in the east s-keV in the case of noble gases, to saturated vapours and even to the liquid state) with a s-calable concept. Reconstruction of MeV-nuckei of variable stopping power, with mm and sub-mm sam- pling. 	WG1, WG6, WG7	1.2, 1.4	 High optical gain across gas densities in pure CF4 and CF4- based mixtures with keV-sensitivity. Fine track sampling capabilities in the range of U/o of µm to few mm. Adaptations in optics and camera readout to cover larger areas, at low granularity and with drift-time informa- tion (3D-readout). Simultaneous detec- tion of low and high ionization particles. 	 Low-pressure nuclear factor reconstruction at ≈10 keV. Low-pressure electron-frack reconstruction of nuclear fracks at ≈100 keV. MP tracking at 10 bar in argon-based gas mixture. Reconstruction of MeV-nuclei with m and sub-num sampling at varying pressure and gas conditions. Stability of reconstruction of movelast reconstructin of movelast reconstruction of movelast reconstruction of m	CERN. GANIL ANU, IRFUCEA. USC/GFAE. GSSI. INFN- RMI. INFN-PD, INFN-BA, INFN- LNF, U New Mexico. STFC RAL, IFIC, U Liverpool, U Genève, U War- wick, U Coimbra, Fermilab, MSU, U Bolta-Abatt, WIS, DIPC, U Hamburg, IFAE, AUTH
T2	Enhanced oper- ation of charge readout across gas densities	 Achieve an ionization-energy ltmsshold of at least skeV in the range 10 mbar to 10 bar (and, in the case of nobic gases, to saturated vapours and even to the laudi state) to the laudi state) concept. Construction of WeV-macked of variable stopping power, with mm and sub-mm sam- pling. 	WG1, WG5, WG6, WG7	1.2, 1.4	 High avalanche gain across gas densiles in CF4, H2, He, Ar, Xe -based TPCs with keV-sensitivity in the range of 10's of µm to lew mmg, density and the range of 10's of µm to lew mmg, density and the range of more electronics, with the ability to self-ingere. TimePtx-based charge readonts. 	- Low-pressure nuclear track reconstruction at =10 kV. - 1 keV ionization-energy threshold at high pressure. - Few MeV septone tracking at 10 hor in argon-based gas. - Reconstruction of MeV- nuclei with mut and sub-min sampling at varying pressure and gabinoditions. - Being the set of the set of the under the set of the set of the nuclei argon and the set of the nuclei argon and the set of the of micking reason of pri- mary ionizations.	AUTH IRFUCCEA, GANIL, U Bonn, ANU, U Colorado, Fermilab, UH Manoa, MSU, RWTH Aachen, U Bolu-Abant, U Bolu-Abant, U Bolu-Abant, U Warwick, U Scolt, SINP Kolkata, U Hamburg, U Newino, AUTH, U Kobe
T3	Enhanced op- eration of pure or trace-amount doped noble gases	- Operation of m ² and ton-scale detectors with single-electron sensitivity and near-Fano level energy resolution	WG1, WG3 (3.2C) WG6, WG7	1.4 (and DRD2)	Enhancement of electroluminoscence (EL) yield in noble gases (scalability, light output). Single-electron detec- tion. Nari-Fano energy resolution. Stabilization of trace- amound doping (mixing, purification). Barium tagging. Stable amplification in ulal-phase detectors. Develop novel ampli- fication structures	 Developing large-area (≥m²-scale) EL ampli- fication: keeping energy resolution and single-electron sensitivity. Imaging in low-diffusion gas. A viable concept for Barium tagging on a viable roadmap towards it. Very large-area (≥10m²- scale) camar-based 3D imaging. Operation of resistive- protected detectors. 	DIPC, IFIC, U Liverpool, U Coimbra, LIP-Coimbra, AstroCeNT, Ben- Gurion U, WIS, U Aveiro, AUTH

WP8: TPCs as reaction and decay chambers

(RARE EVENTS, NEUTRINO PHYSICS, NUCLEAR PHYSICS)

- Reconstruct low-energy nuclear tracks (down to 10 keV energy-scale) with high granularity and close to the thermal diffusion limit.
- · Low energy threshold (keV or less) far from atmospheric pressure (10mbar-20bar).
- · Achieving high and uniform amplification in nearly pure or weakly-doped noble gases
- · Increasing optical throughput (primary and secondary)
- Developing more suitably scintillating and/or eco-friendly gas mixtures as well as recuperation systems;
- Enhancing the radiopurity of the amplification structure and of the TPC as a whole

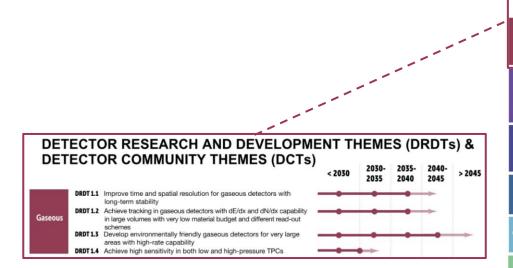
#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
T4	Ultra-low-energy reconstruction of highly ionizing tracks (includ- ing R&D on negative-ion read- out)	 Tracking of \$10keV nuclear tracks in a con- cept scalable to m² and beyond 	WG1, WG5, WG6 WG7	1.2, 1.4	Track: reconstruction of nuclei down to 10 keV energies or below. Simultaneous tracking of melei and electrons and nuclei identifica- ion. . Mcurate dE/dri- sampling for electron and nuclei identifica- ion. . Negative-ion TPCs for Joptracking on large areas, and associated electronics. . Optical readout in a negative ion TPC. Track-reconstruction on spherical counters.	A technology demon- strator in the m ³ scale, with ≈10keV tracking- threshold for nuclear tracks at ≈10's of µm sampling.	CERN, GANIL, ANU, IRFUCEA, GSSI, INFN-RMI, INFN- PD, U. New Mexico, STFC-RAL, MSU, UH Manoa, U. Kobe, HHEP CAS, USTC, U Bohr- Abant, LIP-Coimbra, U Warwick, WIS, CNRS- IN-2PJUGA, ISNAP, U Goimbra, INFN-LAS, SINP Kolkata, U Ham- burg, AUTH, U Kobe
15	Determination of the interaction	 Achieve a viable timing signal 	WG3 (3.1A)	1.4 (and	- 10 sensitivity for accelerator-based neu-	 Demonstration of track reconstruction and 	IFIC, U Liverpool, As- troCeNT, Ben-Gurion
	time (T ₀)	while keeping low electron dif- fusion and high amplification of the ionization signal		DRD2)	trino TPCs. - To sensitivity in the reconstruction of low- energy nuclear recoids, via scintillation light or minority carriers in case of negative-ion TPCs. - Explore the appli- cability of alternative methods (diffusion, positive ion) - To-determination on spherical counters.	T ₀ -tagging for mini- mum ionizing particles at ≈1 MeV-threshold and high pressure.	U, U Zaragoza, GSSI, USC/IGFAE, Fermilab, DIPC, ANU, WIS, U Hamburg, U New Mexico
T6	Modelling	 Develop a microscopic framework for computing scin- tillation and negative-ion yields, and trans- port 	WG3 (3.1A, 3.2A), WG4	1.3,1.4	Modelling primary scintillation. Modelling secondary scintillation. Modelling ion trans- port and avalanche for electronegative mix- tures. Modelling space charge.	 Develop a framework for optical simulation that is integrated as part of the standard commu- nity tools, or develop a concrete implementa- tion path towards it. 	CERN, U Bursa, USC/IGFAE, IFIC, U Aveiro, Astro- CeNT, GSSI, U Kobe, INFN-BA, WIS, DIPC, U Coimbra, SINP Kolkata, U Hamburg, U Aveiro, AUTH
T7	Gas mixtures and gas handling	Study new gas mixtures, oper- ated in conditions of high purity	WG3 (3.1B, 3.2C), WG6, WG7	1.3, 1.4	New gas mixtures for optical readout. New gas mixtures for negative-ion readout. Recirculation and re- cuperation systems. Purification of low- quenched mixtures.	 Develop alternatives to CF4-based mixtures op- erated in open loop, or a viable path towards it. 	USC/IGFAE, DIPC, U Coimbra, CERN, U Liverpool, GSSI, INFN- RM1, U Zaragoza, Fermilab, RWTH Aachen, U Warwick, WIS, DIPC, ISNAP, U Hamburg, U Aveiro, U New Mexico, AUTH
T8	Radiopurity	 Improve manu- facturing process and purifica- tion as well as material-selection standards 	WG3		 Radon emanation studies Mitigation of gaseous radioactive isotopes Material selection Develop radiopure amplification structures and radiopure optical cameras. 	 Develop MPGDs and manufacturing techniques with high radiopurity. 	USC/IGFAE, DIPC, U Liverpool, GSSI, U Zaragoza, U Hamburg, U Kobe

(WP9: Beyond HEP)

- No WP9 in the first proposal
- Community feedback: clear need of Beuyond HEP WP definition
- To be discussed on Thursday

- We can identify different tasks:
 - muography and large area applications;
 - dosimetry/beam monitoring and medical imaging applications (PET, CT, X-ray, SPECT, Gamma cameras, or X-ray fluorescence imaging);
 - fast/thermal neutron imaging (MPGD-based readout with solid converter for tomography and nuclear waste monitoring;
 - X-ray polarimetry and space applications;

Next steps


- WP Coordinators will contact ALL institutes which shared their interest in given WP topics in the survey and/or community feedback
- Institutes can still be added/removed from the individual WP and their tasks
 - It is **not required** to be involved in a WP to be a member of DRD1
 - It is **required** to be a member of DRD1 to contribute to a WP
- "Extended WP tables" will be created together with institutes which declare their contribution to specific WPs
 - "WP projects" with well defined tasks will cluster institutes interested in common goals;
 - Final DRD1-proposal WP tables (following current scheme) will be a compilation of such "WP projects"
 - The institutes intressted to contribute to a given WP need to provide FTE and non-FTE resources in the extended WP tables
 - We differentiate between "existing" and "requested" resources.
 - WP can help in acquiring strategic funding, however, it is not mandatory for an institute to apply for extra funding. One can contribute with the
 exiting resources only
- WP can be created at any time in the future

BACKUP SLIDES

DRD Themes

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

2030. 2035. 2040.

			< 2030	2030- 2035	2035-2040	2040- 2045	> 2045
Gaseous	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with			-	-	
	DRDT 1.2	long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out		-	-	+	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate capability		-	-	-	
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs					
Liquid	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors		•			
		Advance noise reduction in liquid detectors to lower signal energy thresholds		•			
		Improve the material properties of target and detector components in liquid detectors		•			
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems		•			
Solid state	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors		•	•	•	-
		Develop solid state sensors with 4D-capabilities for tracking and calorimetry		•	•	•	
	DRDT 5.3	Extend capabilities of solid state sensors to operate at extreme fluences		_	_	•	-
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics		•	-	-	
PID and Photon		Enhance the timing resolution and spectral range of photon detectors		•	•	•	
		Develop photosensors for extreme environments		-	-	-	
		Develop RICH and imaging detectors with low mass and high resolution timing Develop compact high performance time-of-flight detectors	-			*	
Quantum		Promote the development of advanced quantum sensing technologies		-	-	-	
	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum technologies to particle physics		-	-		
		Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies		-			
		Develop and provide advanced enabling capabilities and infrastructure		-	-		
Calorimetry	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution		-			
		Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods			-		
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments				-	-
Electronics		Advance technologies to deal with greatly increased data density		-	-	-	-
		Develop technologies for increased intelligence on the detector				-	
		Develop technologies in support of 4D- and 5D-techniques			-		
		Develop novel technologies to cope with extreme environments and required longevity		1	-		-
Integration		Evaluate and adapt to emerging electronics and data processing technologies					
		Develop novel magnet systems Develop improved technologies and systems for cooling					
		Adapt novel materials to achieve ultralight, stable and high					-
		precision mechanical structures. Develop Machine Detector Interfaces.	_				
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects					
Training	DCT 1	Establish and maintain a European coordinated programme for training in instrumentation					
	DCT 2	Develop a master's degree programme in instrumentation					

• GSR 1 - Supporting R&D facilities

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: **test beams, large scale generic prototyping and irradiation** be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to **ever more integrated detector concepts**, requiring holistic design approaches and large component counts, the R&D should **be supported with adequate mechanical and electronics engineering resources**, to bring in expertise in stateof-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of **state-of-the-art R&D-specific software packages must be maintained and continuously updated**. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also **long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs** in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to **make concerted investments**.

• GSR 7 – "Blue-sky" R&D

It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. "Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit. Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

• GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and **R&D experts are essential for innovation**. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the **study of recognition** with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

• GSR 9 - Industrial partnerships

It is recommended to **identify promising areas for close collaboration between academic and industrial partners**, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to **establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry**, in particular for developments in solid state sensors and micro-electronics.

• GSR 10 – Open Science

It is recommended that **the concept of Open Science be explicitly supported in the context of instrumentation**, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP³) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.