RD51 Collaboration Meeting

Simulating MRPCs with Garfield++

Djunes Janssens

djunes.janssens@cern.ch

June 20th, 2023

The large number of charges involved in forming an avalanche in multi-gap resistive plate chambers (MRPC) makes microscopic tracking time-consuming. Instead, another approach is used to speed-up the calculations.

Outline:

- Grid-based simulation of avalanche development
- The semi-analytical weighting potential for N-layer geometry
- An example of a MRPC
- Summary

Measurement using a resistive small-pad MM

This simulation recipe for MRPCs leans heavily on two works describing a one-dimensional description of the avalanche dynamics and the signal formation in multi-layer parallel plate type detectors.

Available online at www.s BOIENCE	In E CT + INSTRUMENTS IN E CT + INSTRUMENTS IN PHYSICS Research A 500 (2003) 144-162 S Research A 500 (2003) 144-162	RECEIVES: February 26, 2016 Accurates: October 19, 2016 Punausmus: November 7, 2016
Detector physics and simulation of resistive plate chambers Werner Riegler*, Christian Lippmann, Rob Veenhof EF Division (CRN, Chr131) Commo, 23, Switzerland		Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials
Received 17 June 2002; received in revised for	rm 7 October 2002; accepted 19 November 2002	W Rieder
Abstract		CHR 211 Geneve 23. Switzerland
We present a simulation model suited to study efficiency, timing and pulse-height spectra of Resistive Plate Chambers. After discussing the details of primary ionisation, avalanche multiplication, signal induction and frontend electronics, we apply the model to timing RPCs with time resolution down to 50 ps and trigger RPCs with time resolution of about 1 ns. © 2003 Elevier Science B.V. All rights reserved. PACS: 0.05.Tp; 2:40Cx; 29:40Cx		<i>E-mail:</i> werner.riegler@cern.ch Ansrractr: In this report we discuss static and time dependent electric fields in detector geometries with an abitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pack and measure streig in them accumption. The affect of thull' meighting calculated fields and
Reywords: RPC; Simulation; Signals; Detector physics; Timing	Endersy	signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS
Introduction Resistive Plate Chambers, pioneered during the Plant [1, 2] and developed into Multi Gap Resistive	statistics and space-charge effects, are also dis- cussed and analysed. Primary ionisation in gases and avalanche multiplicitzion in a bonzoarense selectic field usere.	detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.
Plate Chambers during the 1990s [3], have become an integral part of present HEP experiments. A detailed study of signal induction and signal propagation in RPCs can be found in Refs. [4,5]. In this report we focus on the detector physics of RPCs areseight the arimetric ionization and	extensively studied already a long time ago. Comprehensive summaries of these topics are given, e.g. in Ref. [6], by Rühter [7], Sauli [8], and, Blum and Rolandi [9]. References to specific publications will be given in the corresponding	KEYWORDS: Charge induction; Detector modelling and simulations II (electric fields, charge trans- port, multiplication and induction, pulse formation, electron emission, etc); Micropattern gaseous detectors (NSGC, CEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc); Resistive-plate chambers
valanche statistics. We present anglykal formu- lae for average signals, charges, time resolution and efficiency to study the 'order of magnitude' behaviour of RPCs. We describe a simple Monte Carlo procedure that enables us to simulate accurately the detector physics processes. Effects of high fields, like the change in avalanche	Simulation of RPCs was already reported by several authors [10–13]. The motivation of our work lies in the fact that there are still disagree- ments about the explanation for several aspects of RPC performance [14]. The high efficiency of single gap RPCs would require a very large ionisation density of the used gases, which according to some authors contradicts experimen-	ArXiv ePrint: 1602.07949
*Corresponding author. Tel.: +41-22-767-7585. E-mail address: werner.riegler@cern.ch (W. Riegler).	tal values [12,13]. Even in case the large ionisation density was correct the gas gain has to be	
0168-9002/03/5-see front matter () 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S0168-9002(03)0037-1		© CERN 2016, published under the terms of the Constite Constants Anthropics (J.) Location by DP Patianty LT and Saus Modalish et. Ay Immediation of Anthropic Constants of the vectors maintain anthrone the induction of the physical effect (M.) Spannel cardina and EOD.

In addition to Marcello Abbrescia et al., Nucl. Instr. and Meth. A 431 (1999) 413.

The gas volume is subdivided using a 3D grid, on the nodes of which the electrons are snapped and propagated in the direction of drift. This is the **Legler model**. The probability of an avalanche containing n electrons after a distance x after starting with only one is given by:

$$P(n,x) = \begin{cases} k \frac{\bar{n}(x)-1}{\bar{n}(x)-k}, & n = 0\\ \bar{n}(x)(\frac{1-k}{\bar{n}(x)-k})^2 (\frac{\bar{n}(x)-1}{\bar{n}(x)-k})^{n-1}, & n > 0 \end{cases}, \text{ where } \bar{n}(x) = e^{(\alpha - \eta)x}, \quad k = \frac{\eta}{\alpha}.$$

Given the large amount of charge produced in the avalanches its growth will be suppressed.

To take this into account, a crude approximation is made by stopping the growth after having reached 1.6*10⁷ electrons.

C. Lippmann et al., NIM-A 517 (2004) 54-76

M. Abbrescia, et al., Nucl. Phys. B (Proc. Suppl.) 78 (1999) 459. *R.* Camarri, et al., Nucl. Instr. and Meth. A 414 (1998) 317.

However, more sophisticated approaches are available for modeling the space-charge effect:

See <u>presentation</u> of Supratik Mukhopadhyay. Also: arXiv:2211.06361v1 [physics.ins-det]

Total Electric Field V/cm

30000

27500

25000

22500

20000

17500

A gaussian distribution of primary electrons is used as the seed to initiate the avalanche.

RD51–NOTE-2011-005, by Paulo Fonte RD-51 Open Lectures by Filippo Resnati. Also: Jaydeep Datta's <u>presentation</u>.

Given the importance of the early fluctuations to the eventual induced charge distribution, this is more reliably represented by the microscopic tracking in Garfield++. After a set time the switch is made to the Legler model, giving a "mixed method".

Signal formation in a MRPC

Given a rectangular electrode in an N-layer parallel plate geometry, then the static weighting potential is given by:

$$\phi^w(x_0, y_0, z_m) = \frac{4V_w}{\pi^2} \int_0^\infty \int_0^\infty \cos(k_x x_0) \sin\left(\frac{k_x w_x}{2}\right) \cos(k_y y_0) \sin\left(\frac{k_y w_y}{2}\right) \frac{1}{k_x k_y} \frac{\varepsilon_1}{k} \frac{\partial f_{m1}(k, z)}{\partial z}|_{z=z_0} dk_x dk_y$$

Due to the typically high volume resistivities of $O(10^9 - 10^{12}) \Omega cm$ found in RPCs, the delayed component is negligible.

Signal formation in a MRPC

EP R&D

Moving further away from the readout the contribution from the small values of k start to dominate. We can take the as cut-off $k_{max}(m) = p/(z-z_0)$, with p >10 determining the accuracy of the calculation.

$$\phi^{w}(x_{0}, y_{0}, z_{m}) = \frac{4V_{w}}{\pi^{2}} \int_{0}^{\infty} \int_{0}^{\infty} \cos(k_{x}x_{0}) \sin\left(\frac{k_{x}w_{x}}{2}\right) \cos(k_{y}y_{0}) \sin\left(\frac{k_{y}w_{y}}{2}\right) \frac{1}{k_{x}k_{y}} \frac{\varepsilon_{1}}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{\partial f_{m1}(k,z)}{\partial z} |_{z=z_{0}} dk_{x} dk_{y}$$

$$(h) = \frac{1}{k_{x}k_{y}} \frac{1}{k_{y}k_{y}} \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{1}{k_{x}k_{y}} \frac{1}{k_{y}k_{y}} \frac{1}{k_{y}k$$

Signal formation in a MRPC

Each gap contributes equally to the signal formation for a readout plane electrode. This is not necessarily the case for a strip of pad electrode since the weighting field in gaps further removed from the readout is smaller.

Z. Liu et al., NIM-A 908 (2018) 383-387

An example MRPC

The field, weighting potential calculations and geometry information is contained in the *ComponentParallelPlate* class.

Take a 6-gas gap geometry, i.e. N = 17, that is read out from the bottom using a plane electrode.

```
ComponentParallelPlate* RPC = new
        ComponentParallelPlate();
RPC->Setup(N, eps, thickness, voltage);
```

std::string label = "anode"; RPC->AddPlane(label);

An example MRPC

The grid-based Monte Carlo simulation is contained in the *ComponentParallelPlate* class.

The mixed method transition time is set using tMaxWindow.

AvalancheMicroscopic aval;

aval.SetTimeWindow(0., tMaxWindow);

AvalancheGrid avalgrid;

avalgrid.GetElectronsFromAvalancheMicroscopic();

avalgrid.AsignLayerIndex(RPC);
avalgrid.StartGridAvalanche();

Using the weighting potential of N-layered parallel plate geometry and a grid-based Monte Carlo calculation the response of a MRPC can be studied using high statistics more easily.

Improved benchmarking efforts and extensions are under way in the context of the search for environmentally friendly RPC gases. See <u>presentation</u> of Dario Stocco.

Garfield++ Installation Examples Documentation

Simulating a Resistive Plate Chamber

With its foundations laid in the 1980s by R. Santonico, R. Cardarelli et al., Resistive Plate Chambers (RPCs) [1,2] have been integrated into many of today's HEP experiments, e.g. in the ATLAS trigger system [3]. In this example, a step-by-step methodology will be suggested to obtain the induced current on a grounded electrode in a single gap RPC in order to study the relevant physics behind it. A schematic representation of this geometry can be found in the figure below. For this, an extended form of the Ramo-Shockley theorem will be used, which will take the resistive layer's finite resistivity into account. Besides this, a grid-based avalanche statistics method efficiently simulates the Townsend avalanches in the uniform electric field present in the gas gap.

Table of contents

- 1. The dynamic weighting potential.
- 2. Setting the medium.
- 3. Sensor.
- 4. Grid based avalanche statistics calculation.
- 5. Creating events.
- 6. The induced signal.

