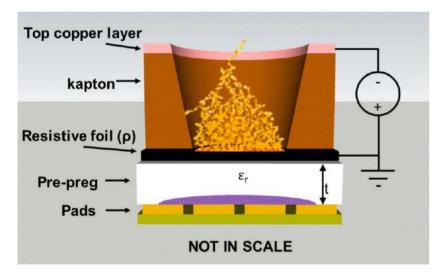
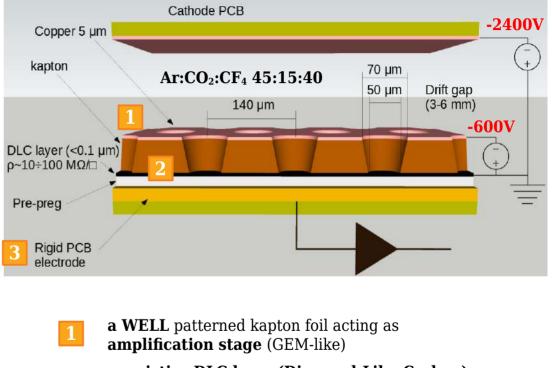


Technology Transfer on high rate µ-RWELL

Matteo Giovannetti [LNF-INFN]


on behalf of LNF-INFN (leading group) Bologna-Ferrara INFN teams R. De Oliveira – CERN-EP-DT-MPT Workshop R. Pinamonti, M. Pinamonti – ELTOS S.p.A.

RD51 collaboration meeting, CERN, June 21th 2023



The µ-RWELL detector (reminder)

The μ -RWELL is a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode. **The core is the \mu-RWELL_PCB**, realized by coupling three different elements:

Applying a suitable voltage between the **top Culayer and the DLC** the WELL acts as a **multiplication channel for the ionization** produced in the conversion/drift gas gap.

a **resistive DLC layer (Diamond-Like-Carbon)** for discharge suppression with surface resistivity $\sim 50 \div 100 \text{ M}\Omega/\Box$

a standard readout PCB

Task objectives

DELIVERABLE - m30

• **D7.3:** µ-RWELL prototypes co-produced by industry under the guidance and supervision of the research team. A complete report will be provided (Task 7.3)

MILESTONE - m36

• MS27: build a 0.3×0.3 m² prototype and the readout plane, with the new structure

Operative Meetings

$\mathbf{21^{st}}$ Sept. $\mathbf{2021}$ - joint INFN-ELTOS-CERN meeting

• standardizing manufacturing procedures of μ -RWELL layout

$1^{\mbox{\scriptsize st-}}3^{\mbox{\scriptsize rd}}$ Dec. 2021 - CERN-INFN meeting

- status of the R&D on the High Rate layout
- 2D layout based on the readout of a segmented amplification stage

$7^{th}\text{--}10^{th}$ Dec. 2021 – 1^{st} test batch in ELTOS

- DLC patterning
- PCB planarizing tests

$7^{th}\text{-}8^{th}$ Mar. 2022 - 2nd test batch in ELTOS

- PCB planarizing tests
- Kapton DLCed foil coupling with PCB-readout

28th-31th Mar. 2022 1st AIDAinnova Annual meeting

Operative Meetings

21st Sept. 2021 - joint INFN-ELTOS-CERN meeting

• standardizing manufacturing procedures of $\mu\text{-RWELL}$ layout

 $1^{\mathrm{st}}\text{-}3^{\mathrm{rd}}$ Dec. 2021 - CERN-INFN meeting

- status of the R&D on the High Rate layout
- 2D layout based on the readout of a segmented amplification stage

7^{th} -10th Dec. 2021 – 1st test batch in ELTOS

- DLC patterning
- PCB planarizing tests

7th-8th Mar. 2022 - 2nd test batch in ELTOS

- PCB planarizing tests
- Kapton DLCed foil coupling with PCB-readout

$\mathbf{31^{st}}$ Oct. $\mathbf{2022}$ - joint INFN-CERN meeting

- Discussion with Rui about the results obtained
- Planning 2023 production

$\mathbf{5}^{th}$ Dec. $\mathbf{2022}$ - joint INFN-ELTOS meeting

• Planning 2023 production

20th-22th Mar. 2023 - 1st production batch in ELTOS

- DLC patterning
- PCB palnarizing (prepreg thickness scan)

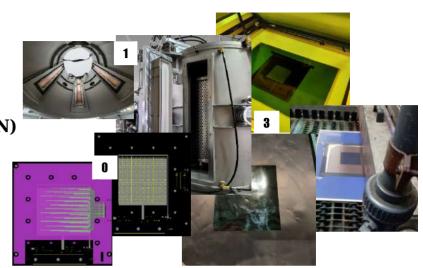
24th-27th Apr. 2023 2nd AIDAinnova Annual meeting

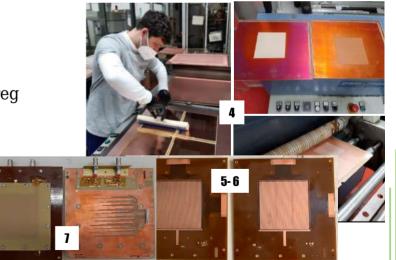
WP7.3.2: Technology Transfer (flow chart)

*DLC Magnetron Sputtering machine co-funded by INFN- CSN1

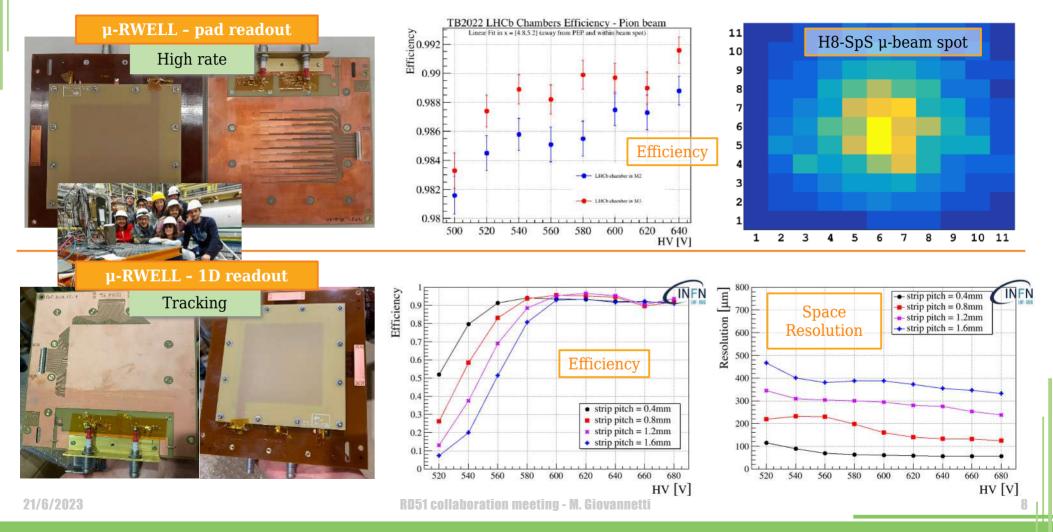
WP7.3.2: Technology Transfer 2022

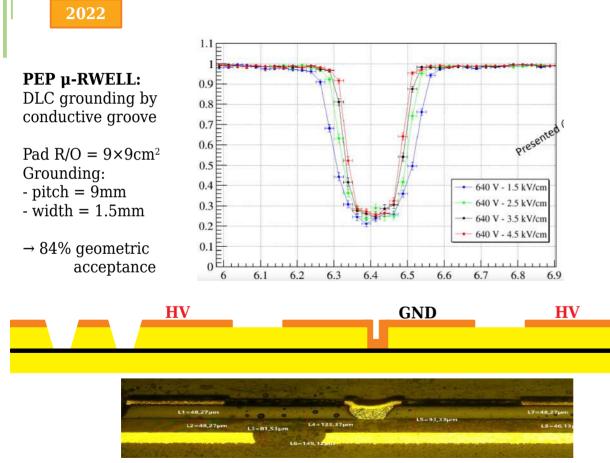
Step 0 - Detector PCB design @ LNF

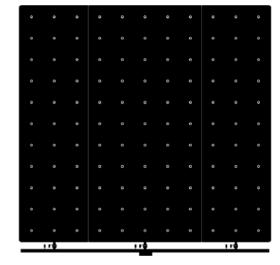

- Step 1 CERN INFN DLC sputtering machine @ CERN (+INFN)
 - delivery foreseen by the end of Oct. 2022
 - INFN crew tbd & trained



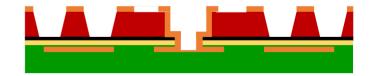
- Step 2- Producing readout PCB by **ELTOS**
 - pad/strip readout
- Step 3 DLC patterning by CERN
 - photo-resist \rightarrow patterning with BRUSHING-machine
- Step 4 DLC foil gluing on PCB by $\ensuremath{\textbf{CERN}}$
 - double 106-prepreg $\rightarrow 2x50\mu m$ thick
 - * PCB planarizing w/ screen printed epoxy \rightarrow single 106-prepreg


- Step 5 Top copper patterning by **CERN** (in future by **ELTOS)**
 - Holes image and HV connections by Cu etching
- Step 6 Amplification stage patterning by $\ensuremath{\textbf{CERN}}$
 - PI etching \rightarrow plating \rightarrow ampl-holes
- Step 7 Electrical cleaning and detector closing @ $\ensuremath{\textbf{CERN}}$

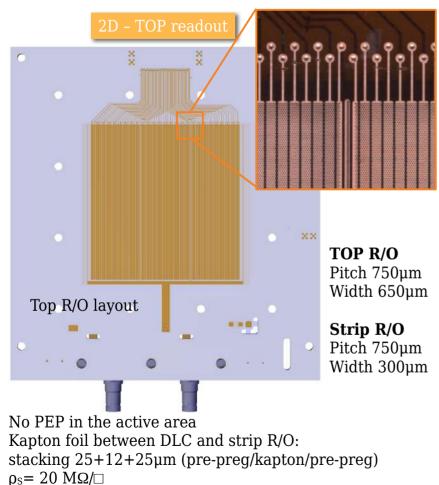


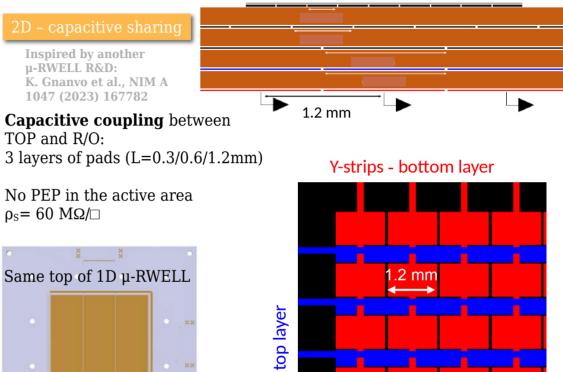


WP7.3.2: µ-RWELL layouts co-built by ELTOS & CERN (Oct.'22)

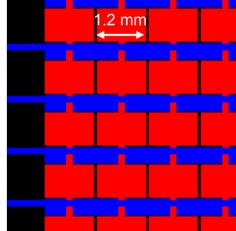

WP7.3.2: (June '23) PEP optimization

PEP-dot µ-RWELL: DLC grounding by conductive dot connected to the readout Dot rim = 1.6mm | Pad R/O = 9×9 cm² $\rightarrow 97\%$ geometric acceptance


2023



RD51 collaboration meeting - M. Giovannetti


WP7.3.2: (June '23) 2D Read Out

Trasversal view

1 X-strips

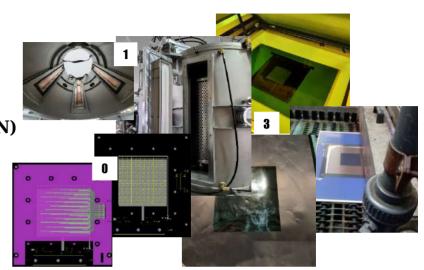
21/6/2023

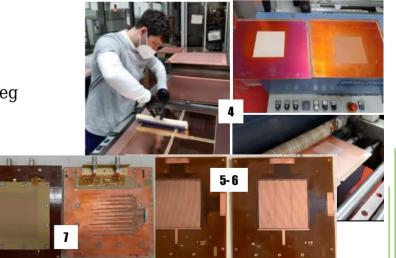
21/6/2023

RD51 collaboration meeting - M. Giovannetti

WP7.3.2: Technology Transfer 2022

Step 0 - Detector PCB design @ LNF

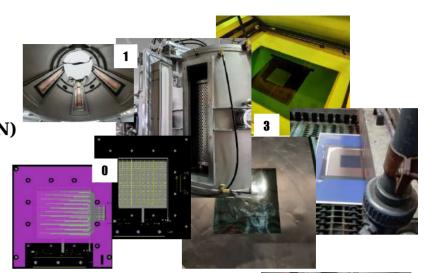

- Step 1 CERN INFN DLC sputtering machine @ CERN (+INFN)
 - delivery foreseen by the end of Oct. 2022
 - INFN crew tbd & trained

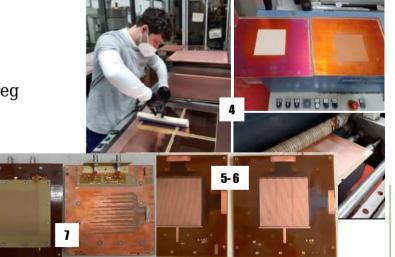


- Step 2- Producing readout PCB by **ELTOS**
 - pad/strip readout
- Step 3 DLC patterning by CERN
 - photo-resist \rightarrow patterning with BRUSHING-machine
- Step 4 DLC foil gluing on PCB by $\ensuremath{\textbf{CERN}}$
 - double 106-prepreg $\rightarrow 2x50\mu m$ thick
 - PCB planarizing w/ screen printed epoxy \rightarrow single 106-prepreg

- Step 5 Top copper patterning by **CERN** (in future by **ELTOS)**
 - Holes image and HV connections by Cu etching
- Step 6 Amplification stage patterning by $\ensuremath{\textbf{CERN}}$
 - PI etching \rightarrow plating \rightarrow ampl-holes
- Step 7 Electrical cleaning and detector closing @ $\ensuremath{\textbf{CERN}}$

WP7.3.2: Technology Transfer 2023


Step 0 - Detector PCB design @ LNF



109

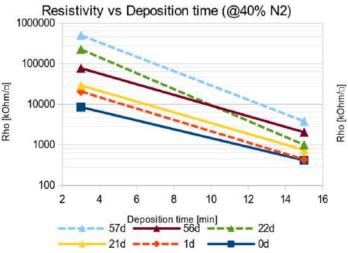
- Step 1 CERN_INFN DLC sputtering machine @ CERN (+INFN)
 - <u>delivered</u> at the end of Oct. 2022
 - **INFN** crew tbd & trained
- Step 2- Producing readout PCB by **ELTOS**
 - pad/strip readout
- Step 3 DLC patterning by $\ensuremath{\textbf{ELTOS}}$
 - photo-resist \rightarrow patterning with BRUSHING-machine
- Step 4 DLC foil gluing on PCB by $\ensuremath{\textbf{ELTOS}}$
 - double 106-prepreg $\rightarrow 2x50\mu m$ thick
 - * PCB planarizing w/ screen printed epoxy \rightarrow single 106-prepreg
- Step 5 Top copper patterning by $\ensuremath{\textbf{CERN}}$ (in future by $\ensuremath{\textbf{ELTOS}}\xspace$
 - Holes image and HV connections by Cu etching

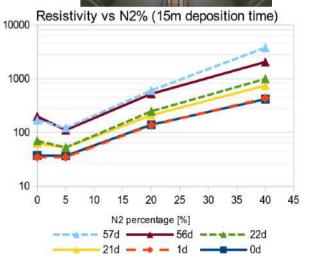
- Step 6 Amplification stage patterning by CERN
 - PI etching \rightarrow plating \rightarrow ampl-holes
- Step 7 Electrical cleaning and detector closing @ CERN

WP7.3.2: update on the CERN-INFN DLC machine

 $\mathbf{31^{st}~Oct.~2022}$ – Delivered $\mathbf{31^{st}~Oct.~-4^{th}~Nov.~2022}$ – Commissioning & test training $\mathbf{21^{st}~-23^{rd}~Nov.~2022}$ – First DLC sputtering test

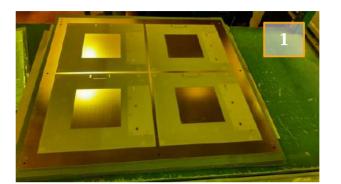
- Ar + N₂ doping (increase sp³ bonds \rightarrow resistivity)
- $19^{\rm th}$ $28^{\rm th}$ Jun. 2023 Second DLC sputtering test
 - Ar + C_2H_2 doping (study H presence in the plasma)


Some technical features:


- Flexible substrates up to 1.7m×0.6m
- **Rigid** substrates up to 0.2m×0.6m

Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters.

The machine shall be able to **sputter or co-sputter different materials,** in order to create a coating layer by layer or an adjustable gradient in the coating.


WP7.3.2: Mar.'23 ELTOS production – DLC patterning

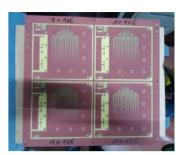
Step 2:

1) **PCB** production

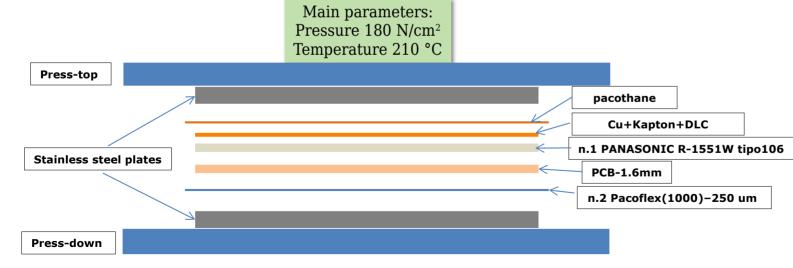
<u>Step 3:</u>

- 2) Photoresist **lamination** for DLC protection
- 3) Photoresist **development**
- 4) **DLC patterning** with brushing machine (@CERN different approach: JET-SCRUBBING)

DLC	
Kapton	
Cu	

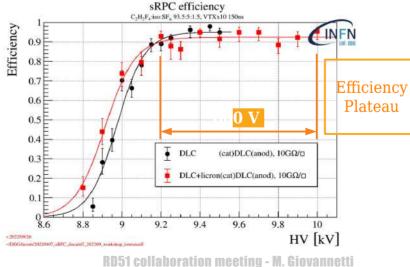

WP7.3.2: Mar.'23 ELTOS production – DLC-foil gluing

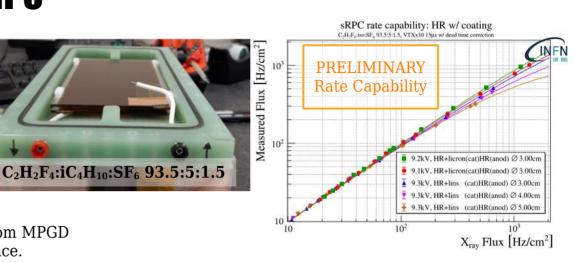
Step 4: Cu-Kapton-DLC gluing on PCB

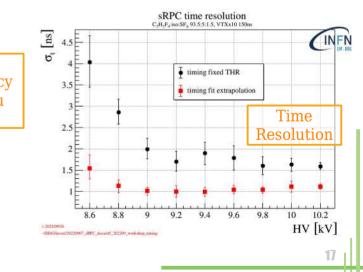

Goal: 16 PEP-dot detectors (9×9mm² pad R/O), with **different pre-preg thickness:** systematic study of signal **pulse width as a function of coupling capacitance** between DLC and R/O pad.

Waiting for shipment to CERN and detector finalization (Step 5-7)

Pre-preg	Δx [µm]
106	50
1080	75
x2 106	100
x2 1080	150


sRPC – an MPGD-tech based RPC




DLC-based RPC:

- From bulk resistivity to surface resistivity: easy tunable resistivity w.r.t. bakelite or glass
- μ-RWELL inspired
 High Rate schemes
- Flexible substrate

A promising novel technology, from MPGD material and technology experience.

WP7.3.2 – Summary


The activity of WP7.3.2 task proceeds on two parallel paths:

- 1) The **industrialization** of a part of the construction steps of the μ-RWELLs at the **ELTOS** company (Arezzo IT), in close **collaboration** with the **CERN-EP-DT-MPT** Workshop:
 - Advances in the TT; **more contruction steps** performed by ELTOS
 - Detector finalization (Kapton Etching, ...) performed at CERN
- 2) The R&D with CERN on the various μ -RWELL layouts is focusing on different items:
 - Design/optimization of the PEP layout \rightarrow **PEP-dot** (97% geom. acceptance)
 - Design of two **2D strip R/O** (capacitive sharing and top strip patterned)
 - Prototype gain characterization with X-ray @LNF-INFN
 - Beam Test in **June'23 in H8-SpS** for all the new prototypes.

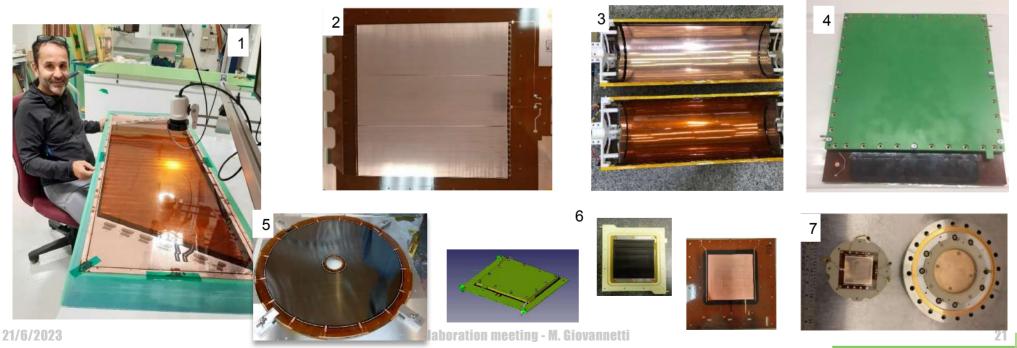
WP7.3.2 – Summary

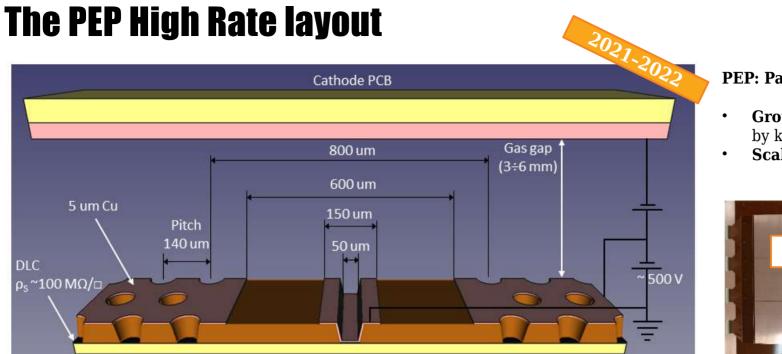
The activity of WP7.3.2 task proceeds on two parallel paths:

- 1) The **industrialization** of a part of the construction steps of the μ-RWELLs at the **ELTOS** company (Arezzo IT), in close **collaboration** with the **CERN-EP-DT-MPT** Workshop:
 - Advances in the TT; **more contruction steps** performed by ELTOS
 - Detector finalization (Kapton Etching, ...) performed at CERN
- 2) The R&D with CERN on the various μ -RWELL layouts is focusing on different items:
 - Design/optimization of the PEP layout \rightarrow **PEP-dot** (97% geom. acceptance)
 - Design of two **2D strip R/O** (capacitive sharing and top strip patterned)
 - Prototype gain characterization with X-ray @LNF-INFN
 - Beam Test in **June'23 in H8-SpS** for all the new prototypes.

Spare

21/6/2023

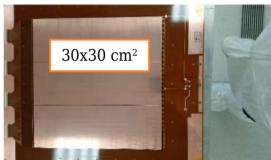

RD51 collaboration meeting - M. Giovannetti

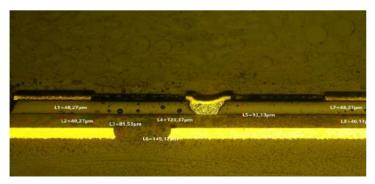

20

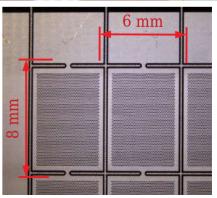
µ-RWELL technology spread

The $\mu\text{-}Resistive$ WELL is proposed in

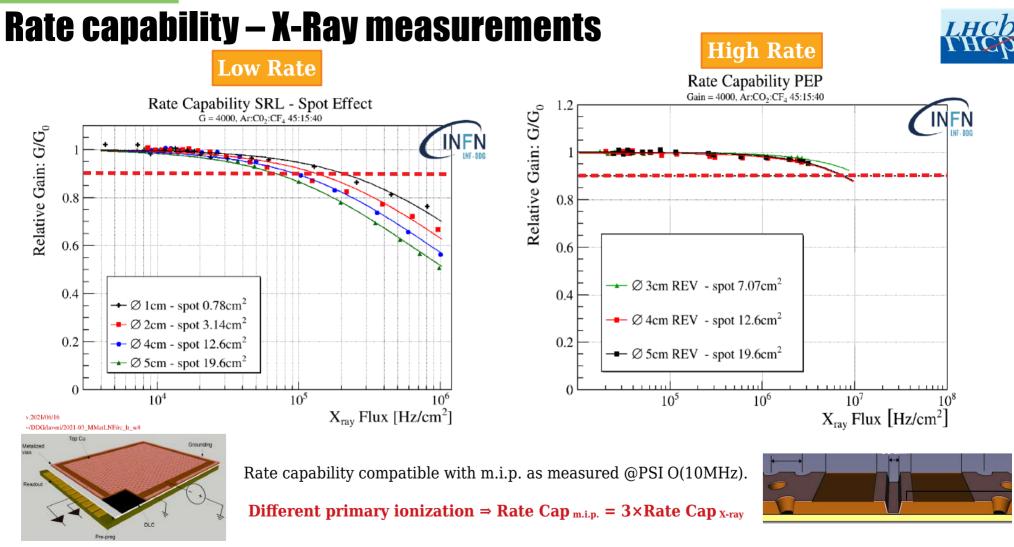
- 1. CLAS12 @ JLAB: the upgrade of the muon spectrometer
- 2. X17 @ n_TOF EAR2: for the amplification stage of a TPC dedicated to the detection of the X17 boson
- 3. TACTIC @ YORK Univ.: radial TPC for detection of nuclear reactions with astrophysical significnace
- 4. Muon collider: hadron calorimeter
- 5. CMD3: uRWELL Disk for the upgrade of the tracking system
- 6. URANIA-V: a project funded by INFN-CSN5 for neutron detection,
- 7. UKRI: neutron detection with pressurized ³He-based gas mixtures



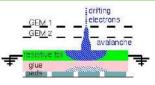


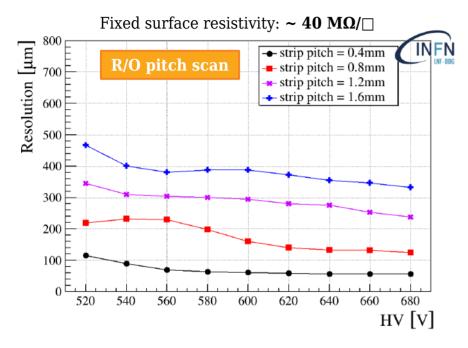

PEP: Patterning - Etching - Plating

- **Grounding from top** by kapton etching and plating
- Scalable to large size

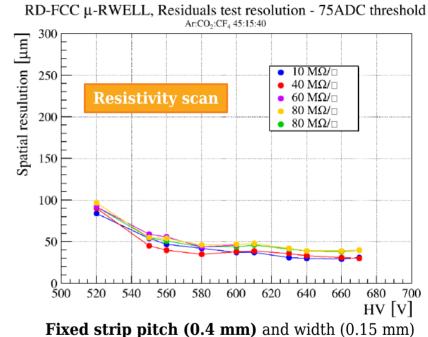


Unitary cell. **black** - the exposed kapton is visible.

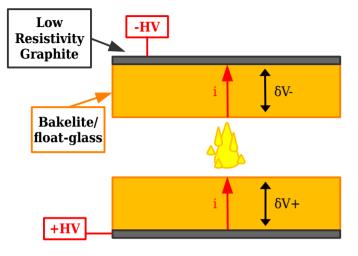

RD51 collaboration meeting - M. Giovannetti


22

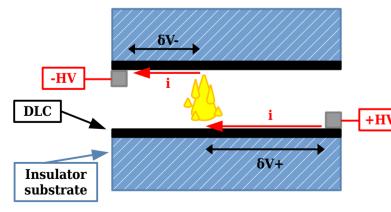
RD51 collaboration meeting - M. Giovannetti


µ-RWELL: DLC charge spread

Need to reduce # FEE channels = Increase the R/O pitch

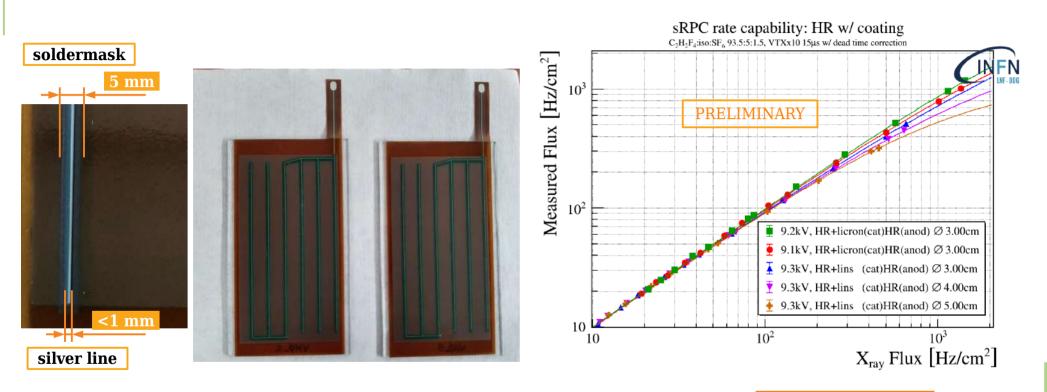

As expected: reduction of the space resolution.

No effects in this resistivity range.


 \rightarrow DLC resistivity uniformity is not a crucial parameter Near future: charge dispersion through different R/O architecture \rightarrow capacitive sharing R/O

Bulk RPC vs Surface RPC

Classical RPCs


- Bulk resistivity electrodes (bakelite, float-glass, ...)
- Recovery time proportional to **volume resistivity, electrode thickness**
 - $\circ \quad \tau = \rho_V \epsilon_0 (\epsilon_r + 2d/g)$
 - Low volume resistivity and thin electrodes, together with the reduction of the gas gain (⊕high gain low noise pre-amp) is the standard recipe to increase the detector rate capability.

sRPCs - surface RPC

- Surface resistivity electrodes manufactured with sputtering techniques of Diamond-like-carbon (DLC) on flexible supports
- High density current evacuation schemes, similar to those used for resistive MPGD (μ-RWELL and MicroMegas), can be implemented to improve the rate capability of the detector

High Rate layout – preliminary results

A **preliminary** measurement of the **rate capability** (defined as the radiation flux corresponding to an efficiency drop of 20%) of the high-rate layout has been **performed** by irradiating the detector **with a 5.9 keV X-ray gun** with a spot size comparable with the pitch of the conductive grid realized on the DLC ($\rho_{DLC} \approx 1.6 \text{ G}\Omega/\Box$).

Rate capability of ~1 kHz/cm² with X-ray