

Towards DRD1 Collaboration:

scientific organization and the timeline

Anna Colaleo (University and INFN Bari), Leszek Ropelewski (CERN)

On behalf of DRD1 coordinators and Working Group conveners

Community meeting 23/6/2023

DRD1 proposal implementation timeline

- March- 5 May: draft document preparation including a preliminary definition of Work Package
- **15 May:** Start the community consultation. <u>**1**st **Draft**</u> shared with Institute Contacts.
- 15 May 1 June: Proposal Team works on the draft document within working groups, implementing the feedback from the community and preparation of the preliminary version of the Executive Summary with WP tables.
- **1 June:** End of the community feedback about the first draft
- 16 June: Approval of the document for the community-wide discussion and release to the <u>2nd draft</u> whole community.
- 22-23 June: <u>DRD1 Community workshop</u> wide discussions during the community workshop
- June- July: Definition of the required resources for the outlined programme need (split into personel effort (FTEs) and material plus services (non-FTE) costs. – institute's inputs; executive summary
- End-July: <u>Submission of the proposal</u>

ECFA

Committee for Eul

DRD1 Proposal

DRD1 document in the making

Structure of the document:

- Executive summary
- Scientific organization of DRD1 Collaboration

Research topics and Work plan

- 8 sections: one per Working Group
- WorkPackages described in 4.2
- Collaboration organization

ECFA

Furonean Committee

Resource and infrastructures

12

20

21

22

DRD1

DRD1 EXTENDED R&D PROPOSAL

Development of Gaseous Detectors

Technologies

Abstract

The document provides an overview of the stale of the art and challenges for various detectors concepts and technologies, as well as a detailed list of R&D tasks grouped into Work Packages (WPs) that related to the strategic R&D programs to which funding agencies might commit, with related infrastructures and tools necessary to advance the technological goals, as outlined in the ECFA R&D roadmap. The main DRD1 document is structured into chapters, each describing the activity planned by the eight Working Groups (WG), which are the core of the future scientific organization. The current DRD1 proposal concentrates on the collaborative research program for the next 3 years.

Geneva, Switzerland

June 20, 2023

List of editors

Organization and collaborative aspects: A. Colaleo, E. Oliveri, L. Ropelewski, M. Titov

Research topics and Work plan

ECFA

European Committee for

Paragraph 4.1 WG1 - Technologies: P.Colas, F. Resnati, P. Wintz, I. Deppner, M. Tytgat, L. Moleri Paragraph 4.2 WG2 - Applications: F. Garcia, P. Gasik, F. Grancagnolo, D. Gonzalez Diaz, G. Aielli, G. Pugliese, R. Farinelli, I. Laktineh Paragraph 4.3 WG3 - Gas and material studies: B. Mandelli, G. Morello, F. Renga, K. Dehmelt, S. Roth, D. Piccolo, A. Pastore, B. A. Gonzalez Paragraph 4.4 WG4 - Detector physics, simulations, and software tools: M.Abbrescia, M. Borysova, P. Fonte, O. Sahin, P. Verwilligen, R. Veenhof Paragraph 4.5 WG5 - Electronics for gaseous detectors H. Muller, J. Kaminski, M. Gouzevitch, R. Cardarelli, Sorin Martoiu, Marco Bregant, Michael Lupberger Paragraph 4.6 WG6 - Detector production: R. De Oliveira, F. Jeanneau, A. Delbart, G. Iaselli, I. Laktineh, G. Charles Paragraph 4.7 WG7: Common test facilities: Y. Tsipolitis, E. Oliveri, R. Guida, G. Iaselli, A. Ferretti Paragraph 4.8 WG8: Training and dissemination: F. Brunbauer, M. Iodice, E. Baracchini, B. Liberti,

A. Paoloni

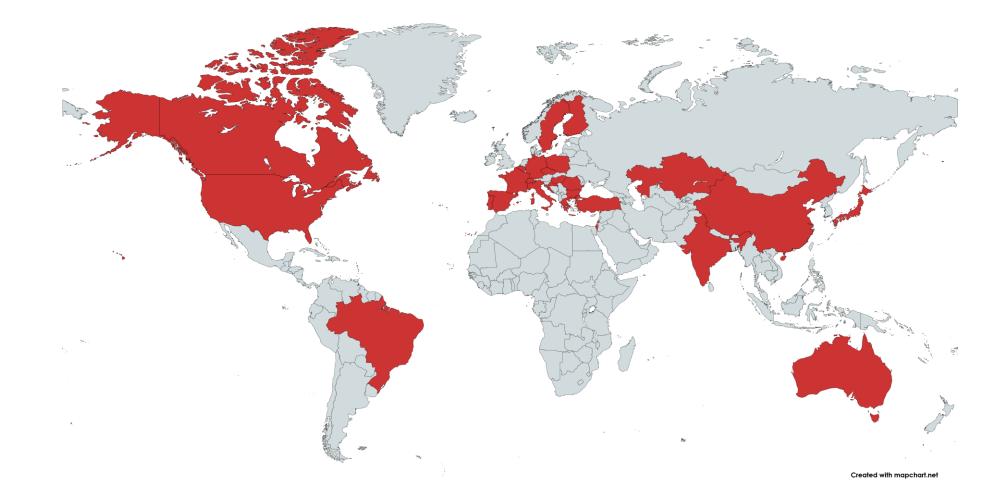
List of editors

<u>Editors of latest draft:</u> Riccardo Farinelli, Esther Ferrer Ribas, Piotr Gasik, Diego Gonzalez Diaz, Michael Lupberger, Eraldo Oliveri, Alessandro Paoloni, Fulvio Tessarotto, Piet Verwilligen

Internal reviewers of the document:

ECFA

European Committee for


Andy White, Paul Colas, Emilio Radicioni, Giuseppe Iaselli, Amos Breskin, Jianbei Liu, Supratik Mukhopadhyay, Atsuhiko Ochi

Many thanks to all editors for the extraordinary effort!

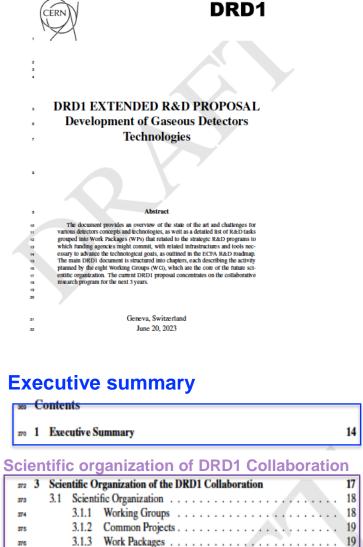
Many thanks to the institute contact persons for providing prompt feedback!

DRD1 Proposal: country maps

108 institutions in 4 continents expressed interest to join the DRD1 Collaboration

ECFA

European Committe


DRD1 Proposal

Research topics and Work plan

	4	P	controls 3	Copics and Work Plan	21
377	4	4.1		nological Aspects and Developments of New Detector Struc-	-1
378		4.1		Common Characterization and Physics Issues [WG1]	21
			4.1.1	Introduction	21
390			4.1.2	Challenges	24
391		4.2		cations [WG2]	26
382		7.2	4.2.1	Trackers/Hodoscopes (Large Area Muon Systems, Inner	20
345			7.2.1	Tracking/Vertexing)	26
395			4.2.2	Inner and Central Tracking with Particle Identification Ca-	~~
396				pability (Drift Chambers, Straw Chambers and Time Pro-	
387				jection Chambers)	27
399			4.2.3	Calorimetry	32
392			4.2.4	Photo-Detectors (PID)	35
290			4.2.5	Timing Detectors (PID and Trigger)	37
391			4.2.6	TPCs as Reaction and Decay Chambers (Rare Events, Neu-	
392				trino Physics, Nuclear Physics)	39
393			4.2.7	Beyond HEP	44
294		4.3	Gas a	nd Materials [WG3]	44
295			4.3.1	Introduction	45
396			4.3.2	Common Research Interests	47
337			4.3.3	Infrastructure and Facilities	50
298		4.4	Mode	Iling and Simulations [WG4]	51
399			4.4.1	Introduction	51
400			4.4.2	State of the Art	52
401			4.4.3	Needs of the Communities	54
402		4.5	Elect	ronics for Gaseous Detectors [WG5]	60
403			4.5.1	Introduction	61
404			4.5.2	Status of Readout Systems for Gaseous Detectors	62
405			4.5.3	Front-End Challenges for Future Facilities, Experiments	
406				and Applications	66
407			4.5.4	Plan for Modernized Readout Systems	68
408			4.5.5	Topics Beyond the Readout Systems	71
409	- 4	.6	Product	tion and Technology Transfer [WG6]	73
410			4.6.1	Development and maintenance of common production fa-	
411				cilities and equipment	73
			4.6.2	Quality controls and large volume productions	75
			4.6.3	Collaboration with Industrial Partners	76
			4.6.4	Establishment and support of a forum for sharing experi-	
		_	-	ences, knowledge, and best practices	77
	4	.7		ration Laboratories and Facilities [WG7]	78
			4.7.1	Detector Laboratories Network	78
			4.7.2	Common Test Beams	79
			4.7.3	Irradiation Facilities	80
			4.7.4	Specialised Laboratories	81
			4.7.5	Instrumentation and software sharing	82
			4.7.6	Detector Test Facilities Databases	84
	4	.8		dge Transfer, Training, Career [WG8]	84
			4.8.1	Knowledge exchange and facilitating scientific collabora-	
				tion	85
-			4.8.2	Training and dissemination initiatives	86
427			4.8.3	Career promotion	87
429			4.8.4	Outreach and education	89

Collaboration organization Resource and infrastructures

429 430				on Organization oration Organization	91 91								
431	6	Resources and Infrastructures 91											
432		6.1	DRD1	Funding Framework	91								
433			6.1.1	Common Fund	92								
434			6.1.2	Work Packages	92								
435				Common Investments									
436	7	Part	ners an	d Their Fields of Contributions	93								
437		7.1 Contributions of the DRD1 Institutes											
439		7.2	Synerg	ies with the other DRD Collaborations	93								

European Committee for

373

374

375

376

ECFA

Scientific organization of DRD1: the pillars

The DRD1 Collaboration aims to promote the development, diffusion, and applications of gaseous detectors, following the General Strategic Recommendations* (GSR) outlined in the ECFA Detector R&D Roadmap Document.

The following pillars form the foundation of this Collaboration:

- Community-Driven Collaboration: The Collaboration is driven by the community, providing a vital forum for exchanging ideas and establishing synergies to minimize duplicated efforts.
- Recognition and Support for Young R&D Experts: The Collaboration will promote proper recognition and support for the careers of instrumentation R&D experts. This support will be facilitated through the member institutes and their interface with the scientific community and institutions.
- **Dynamic and Open R&D Environment:** The Collaboration will strive to create and maintain an up-to-date, dynamic, and open R&D environment. This environment will support the development of necessary tools such as simulation and electronics, as well as the infrastructure required to undertake R&D on novel detectors and to validate their performances against the demanding specifications of future facilities and applications.

* See backup for details

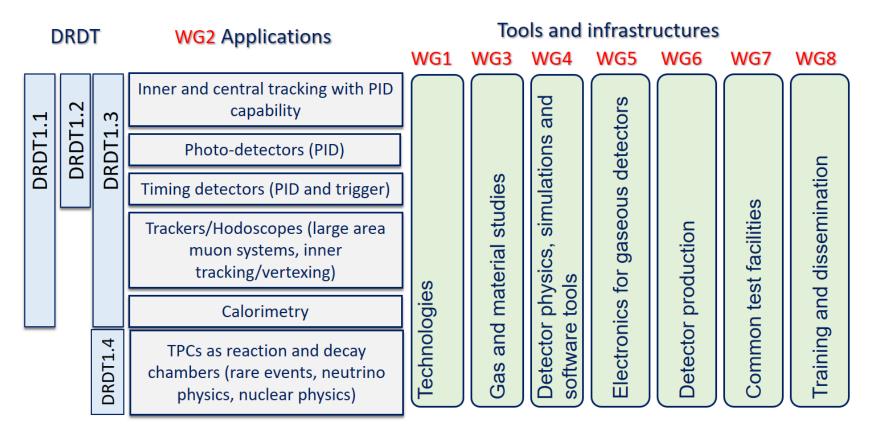
European Committee for Eul

ECFA

Scientific organization of DRD1: the pillars

The DRD1 Collaboration aims to promote the development, diffusion, and applications of gaseous detectors, following the General Strategic Recommendations* (GSR) outlined in the ECFA Detector R&D Roadmap Document.

The following pillars form the foundation of this Collaboration:


ECFA

Committee for Eul

- Global Network and Access to Facilities: Leveraging its worldwide international network, the DRD1 Collaboration will facilitate access to testing facilities and advanced engineering support, available at DRD1 research laboratories and institutes.
- **Support for "Blue-Sky" R&D:** The Collaboration will actively support "Blue-sky" R&D, which can lead to breakthroughs driven by technology. Common resources will be allocated, leveraging the aforementioned R&D environment.
- Efficient Resource Pooling: The Collaboration aims for the most efficient pooling of resources through joint projects that will undergo international review. It will promote and support research plans that attract long-term funding, enabling the community to effectively address future technical challenges. These efforts will also help to build strong relationships between institutes and industrial partners.
- Increasing Research Potential: By adding critical mass to the needs of individual institutes, the Collaboration aims to reduce research costs and enhance potential and results.

DRD1 Scientific organization: Working groups

- Structure in Working Groups, forum for scientific discussions, coordinated by conveners:
- aligned with the scientific program of the ECFA roadmap through the applications related to future facilities challenges, outlined by R&D Themes (DRDTs*), but also to the GSRs

* See backup for details

European Committee for Eul

ECFA

Note: Applications Beyond HEP recently added

DRD1 A. Colaleo

DRD1 scientific organization: Working groups

Working Groups are the core of the scientific collaboration

- supporting the development of novel technologies and the consolidation of existing ones.
- facilitating the exchange of ideas and foster synergies between institutes
- playing a crucial role in identifying, guiding, and supporting strategic detector R&D directions, facilitating the establishment of joint projects between institutes
- serving as a knowledge and technology hub for developing gaseous detector technologies:
 - Technological Aspects and Developments of New Detector Structures, Common Characterization and Physics Issue
 - Applications

ECFA

- Gas and material studies, and link to the novel technologies
- Detector Physics, Modelling and Simulation frameworks
- Electronics for gaseous detectors
- Production and Technology Transfer
- Common Test Facilities and Infrastructures
- Training and dissemination

WG will be recognized as a scientific reference for the community.

DRD1 A. Colaleo

Organization of the collaboration activities

Following the indication of ECFA Detector Panel (*) two areas of Detector R&D :

- "Blue-sky" R&D (competitive, short-term responsive grants, nationally organised)
- Strategic R&D via DRD Collaborations (long-term strategic R&D lines) (address the highpriority items defined in the Roadmap via the DRDTs)

Two types of DRD1 joint projects will be implemented:

Common projects

For low-TRL (blue sky) R&D, or other short term generic projects

Funding method:

- Metabolism of each group
 - EU, National projects
 - DRD1 common fund

Work Packages

Strategic R&D targeting the priority programmes outlined in the updated European Strategy for Particle Physics.

Funding method:

Each institute asks its funding agency and controls the funds

* See backup for details

Common projects

Common Projects (CP) support low TRL (blue-sky) R&D considered of interest by the collaboration, or generic projects (not related to experiments) that are vital for the community and require special backing:

- Technology R&D projects towards developments of novel techniques, improvements of existing technologies, characterization methods and dedicated tools;
- Development and optimization for novel applications;
- Improvement of the technology transfer to industry.

This is a well-defined path (RD51 experience)

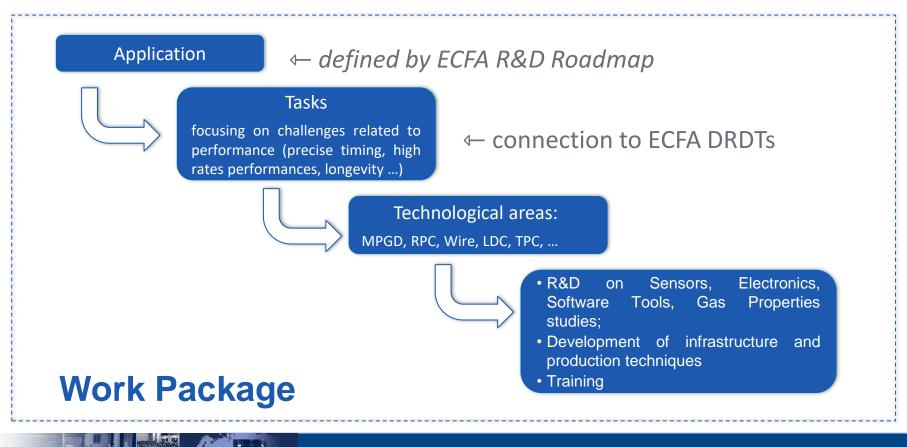
DRD1 Common Fund (details will be clearly defined in the MoU) supports CP with matching resources from participating Institutes.

- a minimum number of participating Institutes to encourage collaborative effort between groups.
- limited in time

ECFA

European Committee for

limited funding support from the collaboration (example 20-30k/y)


→ large number of groups in DRD1 ensures strong R&D

Reviewed by the DRD1 Collaboration

Strategic R&D = Work Package

Strategic R&Ds (according to ECFA Detector R&D Roadmap) organized in Work Packages

group activities of the Institutes with shared research interests around Applications with a focus on a specific task(s) devoted to a specific DRDT challenge, typically related to specific Detector
 Technologies and to the development of specific tool or infrastructure

ECFA

Work Packages

WPs are organized and coordinated internally by participating Institutes:

It is required to be a member of DRD1 to contribute to a WP

Should pursue implementation of the milestones and deliverables and execute the workplan outlined in the approved scientific proposal

>funds are fully controlled and operated by participating Institutes.

The formal agreement between participating Institutes, DRD1 management, and the host lab (CERN) is being sorted out by CERN management

Work Packages **take full advantage and contribute** to the DRD1 scientific program, R&D environment, infrastructure, and R&D tools (electronics, software).

WP can be created at any time in the future

The strategic R&D will be in the focus of the DRDC* reviews.

* See backup for details

Work Packages

WPs are organized and coordinated internally by participating Institutes:

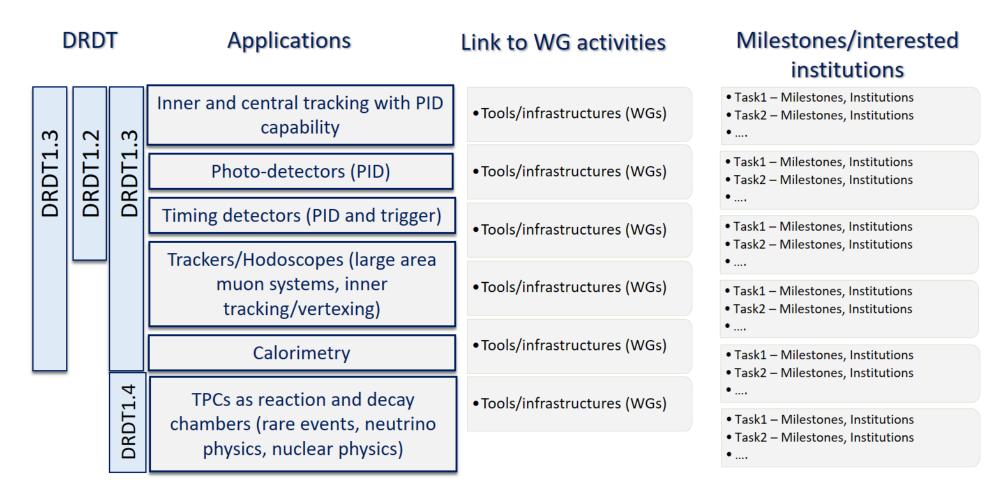
It is required to be a member of DRD1 to contribute to a WP

Should pursue implementation of the milestones and deliverables and execute the workplan outlined in the approved scientific proposal

Funds are fully controlled and operated by participating Institutes.

A formal agreement between participating Institutes, DRD1 management, and the host lab (CERN) is being sorted out by CERN management

Work Packages **take full advantage and contribute** to the DRD1 scientific program, R&D environment, infrastructure, and R&D tools (electronics, software).


WP can be created at any time in the future

The strategic R&D will be in the focus of the DRDC* reviews.

Note: It is not required to be involved in a WP to be a member of DRD1

DRD1 Work Packages

For each Work-package associate to a specific application, the preliminally list of tasks is being prepared according to the feedback received by the community

ECFA

Committee for

Example for Work Package: Inner and central tracking

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	1BF reduction	 Gain×IBF ≈ 1- 2 IBF optimiza- tion together with energy resolution and discharge sta- bility 	WG4, WG7 (7.1- 2,5)	1.2	Hybrid stacks Gating GEM Distortion correc- tions Space-charge mon- itoring Development of simulation tools Operation in mag- netic fields	Provide a large-area pro- totype with a uniform IBF distribution of OTBIE-5 keeping the energy resolu- tion at a tolerable level - Present a structure with stable settings for GxIBF of 1-2 - Determine the ion block- ing power of a GEM-based gate - Provide systematic stud- ies and simulations of HBF performance for the most common structures in (high) magnetic fields - Introduce an IBF calcu- lator (Garinel-based) for optimization of the HV parameters	IFUSP, GSI, Bonn, IRFU/CEA, USTC, KEK- IPNS, DESY, GANIL, RWTH Aachen, INFN-PD, IP- PLM, CERN, PSI, U Bursa, SBU, WIS, U Coimbra, U Aveiro, Wigner, SINP Kolkata
T2	Pixel-TPC de- velopment	 Produce 50000- 60000 GridPixes to read out a full TPC Achieve dN/dx counting- resolution < 4% 	WG5, WG7 (7.1- 2,5)	1.1	 InGrids (grouping of channels) Low-power FEE Optimization of pixel size (>200 µm) or cost reduction 	 Provide a large-area pixel-based (InGrid) read- out module Measuring IBF for GridPix. Reduction with double-mesh Present dV/dx measure- ments in beam Small area prototypes of MPGID/TimePix hybridis- ation. 	U Bonn, U Carleton, WIS, CERN
Τ3	Optimization of the am- plification stage and its mechanical structure, and development of low X/X_0 field cages (FC)	 Uniform e- sponse across a readout unit-area. Keep OgE/dx ≈ 4% Point resolution of <100 µm Minimize static distortions by re- ducing insensitive areas Minimize E×B Achieve E-field homogeneity at ~10⁻⁴ kvel 	WG1, WG4, WG6, WG7 (7.1- 2,5)	1.1 1.2	Minimization of static distortions: - Algorithms for dis- tortion corrections - Field shaping wires - Minimize GEM frame area (use thicker GEMs) - Laser systems - Encapsulated resistive-amode MMG - GridPx - Hybrids FC: - high-quality strips, suspended strips - module flatness	 Provide a solution for a large-volume TPC with O(10⁶) pad-readout by means of pre-production of several readout modules of comparable quality 	IRFUYCEA. U Bonn, IHEP CAS, USTC, GANIL, CCNRS- CCNRS- INZPA/JICLab, GSI, RWTH Aachen, INFN-RMI, INFN-RMI, INFN-RM, INFN-BA, IPPLM, PSI, U Bursa, SBU, BNL, WIS, IFAE
T4	Low-power FEE	- <5 mW/ch for >10 ⁶ pad TPC - ASIC de- velopment in 65 nm CMOS	WG5	1.3	- Continuous vs. pulsed	 Present stable opera- tion of a multi-channel TPC prototype with a low- power ASIC 	IHEP CAS
T5	FEE cooling	 Operate 10⁶ channels per end-plate 	WG5	1.2	Two-phase CO ₂ cooling Micro-channel cooling with 300 µm pipes in carbon fiber tubes 3D printing: com- plex structures, performance opti- mization, material selection	Present a prototype of a cooling system for the 10 ⁶ pad TPC option	IRFU/CEA, U Lund, INFN- PI, INFN-LE, INFN-PD
16	Gas mixture	Optimize: - Longovity - Ageing - Discharge prob- ability - Drift velocity - Ion mobility	WG1, WG3 (3.1D), 3.2A, 3.2B), WG4, WG7 (7.1- 3,5)	П	 Discharge probability, ageing, gas properties Optimization of the HV working point Optimization wrt. the expected ressolution (aim for <100 µm) Cluster ions 	 Lower the discharge probability for readout units by 1-2 orders of magnitude down to ~10⁻⁴¹ per hadron Avoid secondary dis- charges in MPGD stacks 	CERN, IFUSP, GSI, TUM, IHEP CAS, GANIL, USTC, CNRS- INP3/IJCLab, IRFU/CEA, CNRS-LSBB, RWTH Aachen, U Bonn, Bose, INFN-RM1, INFN-LE, INFN-BA, INFN-BA, INFN-BA, U Bursa, SBU, U Warwick, U Aveiro, U Bolu-Abant

EC

Furopean Committee for

Challenges for the TPC at colliders

- Good dE/dx resolution, partly driven by a good gain uniformity;
- very low (gain x Ion Back Flow) to drastically reduce space charge distortions;
- high readout granularity to cope with the particle multiplicity;
- electronics with low power dissipation to meet the increased density of readout channels.
- large area coverage at reduced low cost, relying on lightweight mechanical structures based on composite materials.

Area of application: future electron colliders (ILC, FCC-ee, CEPC). Timeline: 2035-2040, most of the R&D goals should be reached by 2030 to allow for timely construction.

DRD1 proposal implementation timeline: next steps

- March- 5 May: draft document preparation including a preliminary definition of WP
- **15 May:** Start the community consultation. Draft shared with Institute Contacts.
- 15 May 1 June: Proposal Team works on the draft document within working groups, implementing the feedback from the community and preparation of the preliminary version of the Executive Summary with WP tables.
- 1 June: End of the community feedback about the first draft
- **16 June:** Approval of the document for the community-wide discussion and release to the whole community.
- 22-23 June: DRD1 Community workshop wide discussions during the community workshop
- June- July: Definition of the required resources for the outlined programme need (split into personel effort (FTEs) and material plus services (non-FTE) costs. – institute's inputs; executive summary
- End-July: <u>Submission of the proposal</u>

ECFA

Committee for Euli

WP definition: next step

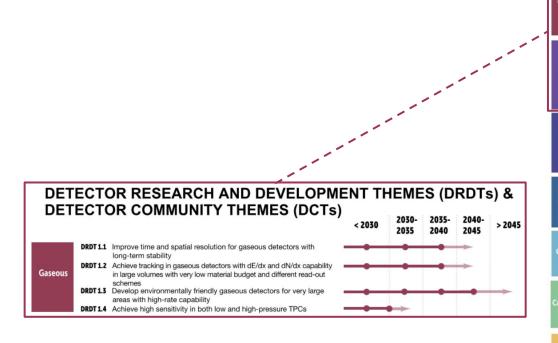
- WP Coordinators will contact ALL institutes which shared their interest in given WP topics in the survey and/or community feedback
- Institutes can still be added/removed from the individual WP and their tasks
- "Extended WP tables" will be created together with institutes which declare their contribution to specific WPs
 - "WP projects" with well defined tasks will cluster institutes interested in common goals;
 - Final DRD1-proposal WP tables will be a compilation of such "WP projects"
 - The institutes interested to contribute to a given WP need to provide FTE and non-FTE resources in the extended WP tables
 - We differentiate between "existing" and "requested" resources.

ECFA

Committee for

• WP can help in acquiring strategic funding, however, it is not mandatory for an institute to apply for extra funding. One can contribute with the exiting resources only

Community meeting agenda


100					
Į	Thu 22/06			Fri 2	3/06
		28:00	1 - DRD1 Collaboration: Scientific organization and the timeline 32/3-004 - 17 Amphitheatre, CERW		
		10:00	2 - Working Groups	09:00	4 - Interplay with other DRDs
		11:00			
					CERN
		12-00	32/3-004 - 17 Amphitheatre, CERW 3 - Work Packages	10:00	1 - DRD1 Collaboration
		13:00	CERN		
		14:00		11:00	
		14.00	3 - Work Puckagen		CERN
		15:00			5 - Discussion
		16:00		12:00	
		17:00			
				13:00	CERN
F	ECFA	18:00			
		A REAL PROPERTY AND		1 A Colaleo	

European Committee for

BACKUP

DRD Themes

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

ECFA

European Committee for

			< 2030	2030- 2035	2035- 2040	2040- 2045	> 2045
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with			-	-	
Gaseous	DRDT 1.2	long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out		•	-	+	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate capability		-		-	
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs		•			
	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors		•			
Liquid		Advance noise reduction in liquid detectors to lower signal energy thresholds		•			
		Improve the material properties of target and detector components in liquid detectors					
		Realise liquid detector technologies scalable for integration in large systems					
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors	-				-
Solid		Develop solid state sensors with 4D-capabilities for tracking and calorimetry		•		•	
state	DRDT 5.3	Extend capabilities of solid state sensors to operate at extreme fluences					-
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics		•	-	-	
PID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors		•	-	•	
Photon	DRDT 4.2	Develop photosensors for extreme environments					-
		Develop RICH and imaging detectors with low mass and high resolution timing Develop compact high performance time-of-flight detectors				*	
		Promote the development of advanced quantum sensing technologies			_	-	
Juantum	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum technologies to particle physics		-		->	
		Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies Develop and provide advanced enabling capabilities and infrastructure		-			
		Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution		-			
lorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods			-		
I,	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments				-	-
		Advance technologies to deal with greatly increased data density		•		•	-
		Develop technologies for increased intelligence on the detector			-	•	-
		Develop technologies in support of 4D- and 5D-techniques			-		
		Develop novel technologies to cope with extreme environments and required longevity Evaluate and adapt to emerging electronics and data processing		-11-			
		technologies					
		Develop novel magnet systems Develop improved technologies and systems for cooling	_	1.1	-		
POLICIPA		Adapt novel materials to achieve ultralight, stable and high					-
tegration		precision mechanical structures. Develop Machine Detector Interfaces.					
,	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects					
Training	DCT1	Establish and maintain a European coordinated programme for training in instrumentation					
	DCT 2	Develop a master's degree programme in instrumentation					-

DRD1 A. Colaleo

General Strategic recommendations

GSR 1 - Supporting R&D facilities

ECFA

European Committee for

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: **test beams, large scale generic prototyping and irradiation** be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to **ever more integrated detector concepts**, requiring holistic design approaches and large component counts, the R&D should **be supported with adequate mechanical and electronics engineering resources**, to bring in expertise in stateof-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of **state-of-the-art R&D-specific software packages must be maintained and continuously updated**. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

General Strategic recommendations

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also **long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs** in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to **make concerted investments**.

• GSR 7 – "Blue-sky" R&D

ECFA

European Committee for

It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. **"Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit.** Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

General Strategic recommendations

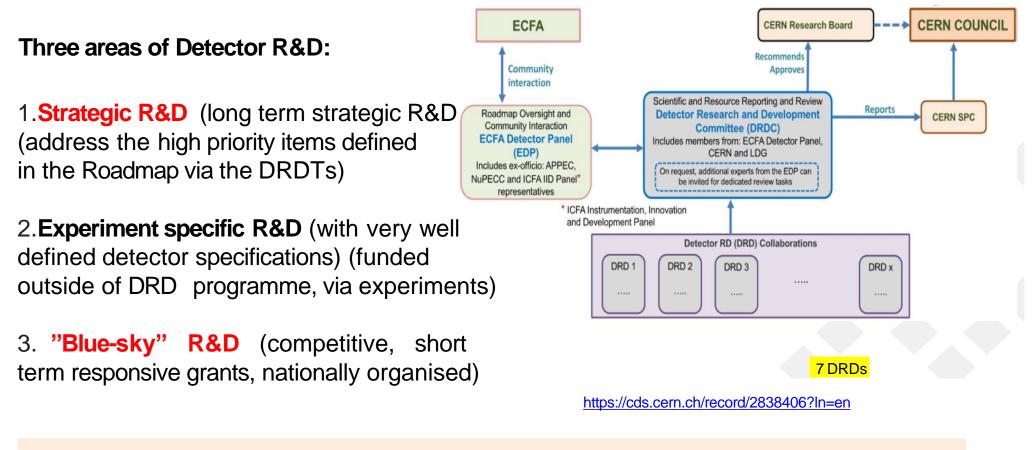
GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and **R&D experts are essential for innovation**. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the **study of recognition** with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

GSR 9 - Industrial partnerships

It is recommended to **identify promising areas for close collaboration between academic and industrial partners**, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to **establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry**, in particular for developments in solid state sensors and micro-electronics.

• GSR 10 – Open Science


ECFA

European Committee for

It is recommended that **the concept of Open Science be explicitly supported in the context of instrumentation**, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP³) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.

ECFA DETECTOR R&D ROADMAP IMPLEMENTATION PLAN

Requested by the CERN Council ECFA Roadmap Coordination Group worked out a proposal to organize long-term R&D effort into: new established **Detector R&D Collaboration anchored at CERN**

DRD9 is taken care of by a new ECFA Training Panel **DRD8** felt their area is too experiment specific to be the topic of a "Strategic R&D" bid.

ECFA

European Committee for

Beyond HEP

- No Beyond WP in the first draft
- Community feedback: clear need of Beyond HEP WP definition

• Preliminary list of tasks identified:

ECFA

- muongraphy and large area applications;
- dosimetry/beam monitoring and medical imaging applications (PET, CT, X-ray, SPECT, Gamma cameras, or X-ray fluorescence imaging);
- fast/thermal neutron imaging (MPGD-based readout with solid converter for tomography and nuclear waste monitoring;
- X-ray polarimetry and space applications;