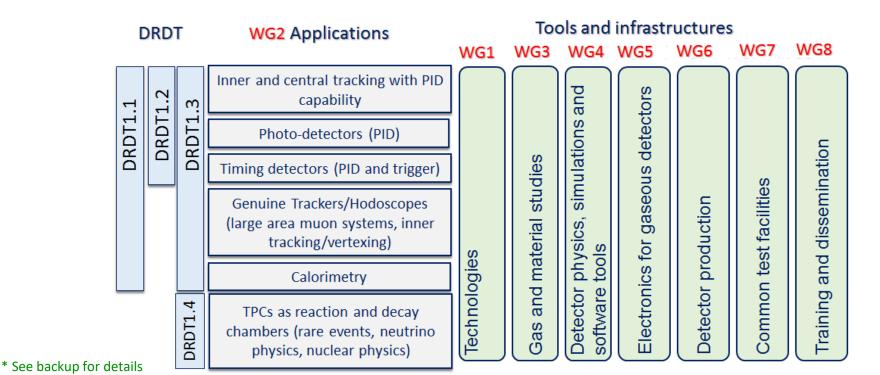


WG2 Applications

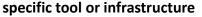
(on behalf of WG2 conveners)

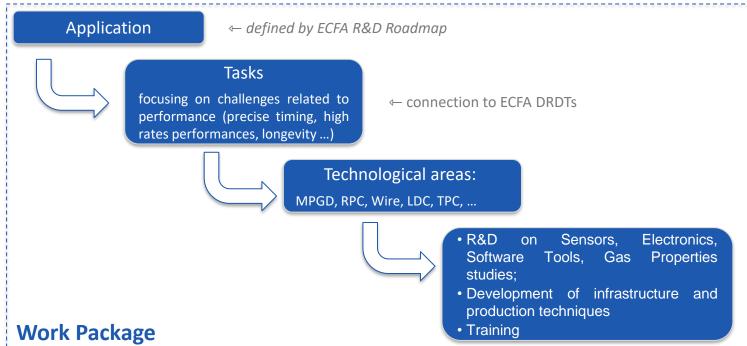

DRD1 Community Meeting 22 June 2023

DRD1 structure

2

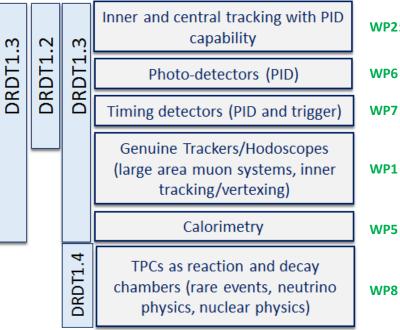
- Structure in Working Groups, forum for scientific discussions, coordinated by conveners:
 - aligned with the scientific program of the ECFA roadmap through the applications related to future facilities challenges,
 outlined by R&D Themes (DRDTs*), but also to the GSRs* (General Recommendation Strategies)




Work Packages

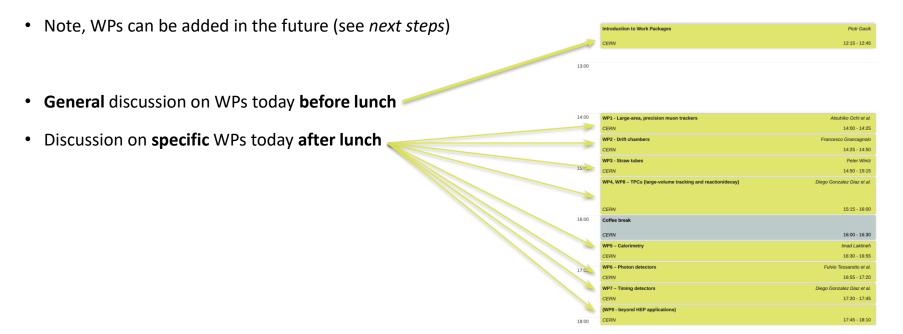
3

- Strategic R&D (according to the ECFA Detector R&D Roadmap) is organized in Work Packages
 - group activities of the Institutes with shared research interests around Applications with a focus on a specific task(s)
 devoted to a specific DRDT challenge, typically related to specific Detector Technologies and to the development of



DRDT Applications Milestones/interested Link to WG activities institutions Task1 – Milestones, Institutions Inner and central tracking with PID Tools/infrastructures (WGs) Task2 – Milestones, Institutions capability ŝ 2 ω • DRDT1. RDT1 DRDT1 Task1 – Milestones, Institutions Photo-detectors (PID) Tools/infrastructures (WGs) Task2 – Milestones, Institutions • Timing detectors (PID and trigger) Tools/infrastructures (WGs) Task1 – Milestones, Institutions Task2 – Milestones, Institutions Genuine Trackers/Hodoscopes • (large area muon systems, inner Tools/infrastructures (WGs) Task1 – Milestones, Institutions tracking/vertexing) Task2 – Milestones, Institutions • Tools/infrastructures (WGs) Calorimetry Task1 – Milestones, Institutions Task2 – Milestones, Institutions 4 • TPCs as reaction and decay Tools/infrastructures (WGs) DRDT1. Task1 – Milestones, Institutions chambers (rare events, neutrino Task2 – Milestones, Institutions physics, nuclear physics) •

5


DRDT Applications

WP2: Drift Chambers, WP3: Straw Chambers, WP4: (Large Volume) Tracking TPCs

Disclaimer

- The WP in the DRD1 proposal draft shall be also considered as a draft.
- Open for discussion and modificaiton (see next steps)
- If possible, we would keep the current division and approx. number of WPs for the final proposal

Applications

7

Inner and central tracking with PID capability

Photo-detectors (PID)

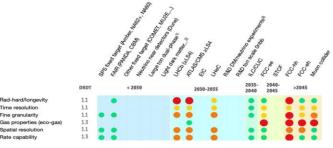
Timing detectors (PID and trigger)

Genuine Trackers/Hodoscopes (large area muon systems, inner tracking/vertexing)

Calorimetry

TPCs as reaction and decay chambers (rare events, neutrino physics, nuclear physics) • Main R&D challenges for each application

CER


• Work Package tables

(large area muon systems, tracking/vertexing)

Challenges/tasks

8

- extend state-of-the-art rate capability and longevity by minimum one order of magnitude or more in the highest eta region (up to an order of MHz/cm²)
- enable detectors reliably and efficiently working with suitable low GWP mixtures ٠
- reaching the two objectives above can be favored in 3 ways:
 - low noise electronics integrated in a highly stable and noise immune Faraday cage
 - new detector geometries increasing the signal collection yield
 - use of innovative resistive material for suppressing discharges on the electrodes.
- From the last meeting Time resolution O(20ps) for timing applications and of 200-300 ps to identify the BC in a very high rate collider, to help in cutting the pile up and to boost the ability to measure particle velocity
- large series industrializes production

(large area muon systems, tracking/vertexing)

9

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3 y	Interested Institutes
TI	New resistive RPC ma- terials and production techniques for resistive layers	 Develop low-cost resistive layers Increase rate capabil- ity 	WG3 (3.1C, 3.2D), WG6, WG7 (7.1- 5)	1.1, 1.2	HPL, low resistivity glass Semiconductors Printed resistive pat- terns DLC-sputtered electrodes for surface- dissipation in RPCs	 Design, con- struction and test of prototypes with new produc- tion techniques 	INFN-RM2, INFN-PD, INFN-BO, U Kobe, INFN-PV, WIS, INFN- LNF, CERN, IPPLM, U Bolu-Abant, U Cambridge, HYU
T2	New resistive MPGD structures	 Stable up to gains of O(10⁶) High gain in a single multiplication stage High rate capability (1) MH2/cm² and beyond) High tracking performance 	WG3 (3.1C, 3.2D), WG4, WG6, WG7 (7.1- 5)	1.2	High-rate DLC layout for micro-RWELL	Design, con- struction and test of prototypes with new resistive materials Modelling and Simulation (sig- nal induction) MPGD proto- types based on resistive elements for tracking	USTC, INFN-PD, INFN-NA, INFN-RM3, INFN-INF, INFN-FE, INFN-PO, INFN-BO, U Kobe,WIS, IRFU/CEA, IPPLM, LMU, U Bolu-Abant, CERN
	2D readout optimiza- tion	 Development of low- granularity 2D-readout with high tracking per- formance 			 Layouts based on low resistivity DLC film and charge sharing 	 Design, con- struction and test of prototypes with low-granularity 2D-readout 	INFN-LNF
T3	New front-end electron- ics	 I C threshold High-sensitivity electronics to help achieving stable and efficient operation up to ≈MHz/cm² 	WG5, WG7 (7.1.2)	Ш	Integration of FEE in the detector Faraday cage Integration of elec- tronics and readout PCB	Conceptual based on gas de- tector simulation and experimental measurements - Development and test of a front- end prototype - High throughput multichan- nel FE (peak time/amplitude based VMM3a); performance studies and opti- mization.	IFIN-HH, INFN-BA, INFN-BA, INFN-TO, IRFU/CEA, IPPLM, INFN-RM2, U Cambridge, CERN
T4	Optimization of seal- able multichannel read- out systems	 Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and ≈20 GBit/s to DAQ 	WG5	1.1, 1.2	FPGA-based architec- ture FPGA with embedded processing for trigger- ing and ML Basic firmware and software can be boot- strapped from existing readout system	 First prototype by the end of 2024 for commissioning at test beam SRS/VMM3a Readout: Continuous and trigger mode, distributed systems, syn- chronization with other DAQs. 	IFIN-HH, INFN-BO, U Bonn, IPPLM, CIEMAT, CERN

o Task

• Performance goal

Include input from

- Challenges defined in ECFA Roadmap
- Survey + 1st DRD1 Community Meeting
- Conveners
- Community Feedback

(large area muon systems, tracking/vertexing)

\$	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv, next 3 y	Interested Institutes
C1	New resistive RPC ma- terials and production techniques for resistive layers	- Develop low-cost resistive layers - Increase rate capabil- ity	WG3 (3.1C, 3.2D), WG6, WG7 (7.1- 5)	1.1, 1.2	HPL, low resistivity glass Semiconductors Printed resistive pat- terns DLC-sputtered electrodes for surface- dissipation in RPCs	 Design, con- struction and test of prototypes with new produc- tion techniques 	INFN-RM2, INFN-PD, INFN-BO, U Kobe, INFN-PV, WIS, INFN- LNF, CERN, IPPLM, U Bolu-Abant, U Cambridge, HYU
F2	New resistive MPGD structures	 Stable up to gains of C(10⁶) High gain in a single multiplication stage multiplication stage (10⁶) High rate capability (11 MH2/cm² and heyond) High tracking performance 	WG3 (3.1C, 3.2D), WG4, WG6, WG7 (7.1- 5)	1.2	High-rate DLC layout for micro-RWELL	Design, con- struction and test of prototypes with new resistive materials Modelling and Simulation (sig- nal induction) MPGD proto- types based on resistive elements for tracking	USTC, INFN-PD, INFN-RM3, INFN-RM3, INFN-LNF, INFN-FV, INFN-PV, INFN-BO, U Kobe,WIS, IRFU/CEA, IPPLM, LMU, U Bolu-Abant, CERN
	2D readout optimiza- tion	 Development of low- granularity 2D-readout with high tracking per- formance 			 Layouts based on low resistivity DLC film and charge sharing 	 Design, con- struction and test of prototypes with low-granularity 2D-readout 	INFN-LNF
F3	New front-end electron- ics	 I C threshold High-sensitivity lectronics to help achieving stable and efficient operation up to	WG5, WG7 (7.1.2)	LI	Integration of PEE in the detector Faraday cage Integration of elec- tronics and readout PCB	Conceptual clectronics design based on gas de- tector simulation and experimental measurements and test of a front- end protytype - High throughput multichan- nel FE (peak time/amplitude based VMM3a); performance studies and opti- mization.	IFIN-HH, INFN-FE, INFN-BA, INFN-BO, INFN-TO, INFN-TO, INFN-TO, INFN-RM2, U Cambridge. CERN
F4	Optimization of scal- able multichannel read- out systems	 Front-end link con- centrator to a power- tul FPGA with possibil- ities of triggering and ≈20 GBit/s to DAQ 	WG5	1.1, 1.2	 FPGA-based architec- ture FPGA with embedded processing for trigger- ing and ML Basic firmware and software can be boot- strapped from existing readout system 	 First prototype by the end of 2024 for com- missioning at test beam SRS/VMM3a Readout: Contin- uous and trigger mode, distributed systems, syn- chronization with other DAQs. 	IFIN-HH, INFN-BO, U Bonn, IPPLM, CIEMAT, CERN

\circ Task

• Performance goal

o DRD1 WGs

- Link to DRD1 WGs activities

D ECFA DRDT

- Connection to ECFA DRDTs

(large area muon systems, tracking/vertexing)

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv, next 3 y	Interested Institutes
TI	New resistive RPC ma- terials and production techniques for resistive layers	 Develop low-cost resistive layers Increase rate capabil- ity 	WG3 (3.1C, 3.2D), WG6, WG7 (7.1- 5)	1.1, 1.2	HPL, low resistivity glass Semiconductors Printed resistive pat- terns DLC-sputtered electrodes for surface- dissipation in RPCs	 Design, con- struction and test of prototypes with new produc- tion techniques 	INFN-RM2, INFN-PD, INFN-BO, U Kobe, INFN-PV, WIS, INFN- LNF, CERN, IPPLM, U Bolu-Abant, U Cambridge, HYU
T2	New resistive MPGD structures	 Stable up to gains of O(10⁶) High gain in a single multiplication stage High rate capability (1) MH2/cm² and beyond) High tracking performance 	WG3 (3.1C, 3.2D), WG4, WG6, WG7 (7.1- 5)	1.2	High-rate DLC layout for micro-RWELL	Design, con- struction and test of prototypes with new resistive materials Modelling and Simulation (sig- nal induction) MPGD proto- types based on resistive elements for tracking	USTC, INFN-PD, INFN-NA, INFN-RM3, INFN-INF, INFN-FE, INFN-PV, INFN-BO, U Kobe,WIS, INFN-BO, U Kobe,WIS, INFU-CEA, IPPLM, LMU, U Bolu-Abant, CERN
	2D readout optimiza- tion	 Development of low- granularity 2D-readout with high tracking per- formance 			 Layouts based on low resistivity DLC film and charge sharing 	 Design, con- struction and test of prototypes with low-granularity 2D-readout 	INFN-LNF
T3	New front-end electron- ics	 I C threshold High-sensitivity electronics to help achieving stable and efficient operation up to ≈MHz/cm² 	WG5, WG7 (7.1.2)	Ш	Integration of FEE in the detector Faraday cage Integration of elec- tronics and readout PCB	Conceptual based on gas de- tector simulation and experimental measurements - Development and test of a front- end prototype - High throughput multichan- nel FE (peak time/amplitude based VMM3a); performance studies and opti- mization.	IFIN-HH, INFN-BA, INFN-BA, INFN-BO, INFN-TO, IRFU/CEA, IPPLM, INFN-RM2, U Cambridge, CERN
T4	Optimization of seal- able multichannel read- out systems	 Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and ≈20 GBit/s to DAQ 	WG5	1.1, 1.2	FPGA-based architec- ture FPGA with embedded processing for trigger- ing and ML Basic firmware and software can be boot- strapped from existing readout system	 First prototype by the end of 2024 for commissioning at test beam SRS/VMM3a Readout: Continuous and trigger mode, distributed systems, syn- chronization with other DAQs. 	IFIN-HH, INFN-BO, U Bonn, IPPLM, CIEMAT, CERN

o Task

- Performance goal
- o DRD1 WGs

o ECFA DRDT

o Comments

Deliverables next 3 years

- proposal, partially based on the ECFA Roadmap
- input from the conveners and community
- timeline (deliv. until 2027) not always considered
- to be re-visited (see next steps)

(large area muon systems, tracking/vertexing)

ŧ	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv, next 3 y	Interested Institutes
Г1	New resistive RPC ma- terials and production techniques for resistive layers	 Develop low-cost resistive layers Increase rate capabil- ity 	WG3 (3.1C, 3.2D), WG6, WG7 (7.1- 5)	1.1, 1.2	HPL, low resistivity glass Semiconductors Printed resistive pat- terns DLC-sputtered electrodes for surface- dissipation in RPCs	 Design, con- struction and test of prototypes with new produc- tion techniques 	INFN-RM2, INFN-PD, INFN-BO, U Kobe, INFN-PV, WIS, INFN- LNF, CERN, IPPLM, U Bolu-Abant, U Cambridge, HYU
Γ2	New resistive MPGD structures	 Stable up to gains of C(10⁶) High gain in a single multiplication stage multiplication stage (10⁶) High rate capability (11 MH2/cm² and heyond) High tracking performance 	WG3 (3.1C, 3.2D), WG4, WG6, WG7 (7.1- 5)	1.2	High-rate DLC layout for micro-RWELL	Design, con- struction and test of prototypes with new resistive materials Modelling and Simulation (sig- nal induction) MPGD proto- types based on resistive elements for tracking	USTC, INFN-PD, INFN-RM3, INFN-RM3, INFN-LNF, INFN-PV, INFN-PV, INFN-BO, UKobe,WIS, IRFU/CEA, IPPLM, LMU, U Bolu-Abant, CERN
	2D readout optimiza- tion	 Development of low- granularity 2D-readout with high tracking per- formance 			 Layouts based on low resistivity DLC film and charge sharing 	 Design, con- struction and test of prototypes with low-granularity 2D-readout 	INFN-LNF
F 3	New front-end electron- ics	 1 fC threshold High-sensitivity lectronics to help achieving stable and efficient operation up to	WG5, WG7 (7.1.2)	LI	Integration of PEE in the detector Faraday cage Integration of elec- tronics and readout PCB	 Conceptual electronics design based on gas de- tector simulation and experimental measurements Development and test of a front- end prototype High throughput multichan- nel FE (peak time/amplitude based VMM3a); performance studies and opti- mization. 	IFIN-HH, INFN-BA, INFN-BA, INFN-TO, INFN-TO, IRFU/CEA, IPPLM, INFN-RM2, U Cambridge CERN
Γ4	Optimization of scal- able multichannel read- out systems	 Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and ≈20 GBit/s to DAQ 	WG5	1.1, 1.2	 FPGA-based architec- ture FPGA with embedded processing for trigger- ing and ML Basic firmware and software can be boot- strapped from existing readout system 	 First prototype by the end of 2024 for com- missioning at test beam SRSVMM3a Readout: Contin- uous and trigger mode, distributed systems, syn- chronization with other DAQs. 	IFIN-HH, INFN-BO, U Bonn, IPPLM CIEMAT, CERN

o Task

- Performance goal
- o DRD1 WGs

o ECFA DRDT

o Comments

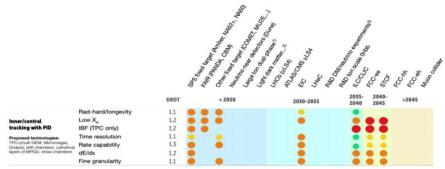
O Deliverables next 3 years

Interested institutes

- Input from the survey, conveners,

institute contact persons. Continuously updated

- base for planning next steps


(large area muon systems, tracking/vertexing)

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv, next 3 y	Interested Institutes
TI	New resistive RPC ma- terials and production techniques for resistive layers	 Develop low-cost resistive layers Increase rate capabil- ity 	WG3 (3.1C, 3.2D), WG6, WG7 (7.1- 5)	1.1, 1.2	HPL, low resistivity glass Semiconductors Printed resistive pat- terns DLC-sputtered electrodes for surface- dissipation in RPCs	 Design, con- struction and test of prototypes with new produc- tion techniques 	INFN-RM2, INFN-PD, INFN-BO, U Kobe, INFN-PV, WIS, INFN- LNF, CERN, IPPLM, U Bolu-Abant, U Cambridge, HYU
T2	New resistive MPGD structures	 Stable up to gains of O(10⁶) High gain in a single multiplication stage High rate capabil- ity (1 MHz/cm² and be- yond) High tracking perfor- mance 	(3.1C, (3.1C, e WG4, w WG4, d be- WG7 (7.1- (7.1- rfor- 5)		- High-rate DLC layout for micro-RWELL	 Design, con- struction and test of prototypes with new resistive materials Modelling and Simulation (sig- nal induction) MPGD proto- types based on resistive elements for tracking 	USTC, INFN-PD, INFN-NA, INFN-RM3, INFN-FE, INFN-PV, INFN-BO, U Kobe,WIS, IRFU/CEA, IPPLM, LMU, U Bolu-Abant, CERN
	2D readout optimiza- tion	 Development of low- granularity 2D-readout with high tracking per- formance 			 Layouts based on low resistivity DLC film and charge sharing 	 Design, con- struction and test of prototypes with low-granularity 2D-readout 	INFN-LNF
T3	New front-end electron- ics	1 IC threshold High-sensitivity electronics to help achieving stable and efficient operation up to ≈MHz/cm ²	WG5, WG7 (7.1.2)	LI	Integration of PEE in the detector Faraday cage Integration of elec- tronics and readout PCB	Conceptual clectronics design based on gas de- lector simulation and experimental measurements Development and test of a front- end prototype High throughput multichan- nel FE (peak time/amplitude based VMM3a); performance studies and opti- mization.	IFIN-HH, INFN-BA, INFN-BA, INFN-TO, IRFU/CEA, IPPLM, INFN-RM2, U Cambridge, CERN
T4	Optimization of scal- able multichannel read- out systems	 Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and ≈20 GBi0's to DAQ 	WG5	1.1, 1.2	FPGA-based architec- ture FPGA with embedded processing for trigger- ing and ML Basic firmware and software can be boot- strapped from existing readout system	 First prototype by the end of 2024 for com- missioning at test beam SRS/VMM3a Readout: Contin- uous and trigger mode, distributed systems, syn- chronization with other DAQs. 	IFIN-HH, INFN-BO, U Bonn, IPPLM, CIEMAT, CERN

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3 y	Interested Institutes
T5	Eco-friendly gases	 Guarantee long-term operation Explore compatibility and optimized operation with low-GWP gases 	WG3 (3.1A, 3.1B, 3.2C), WG4, WG7 (7.1- 4)	1.1	 Ageing studies Leak mitigation and maintenance of existing systems Gas simulation: drift velocity, diffusion 	- Test and char- acterization of gaseous-detection technologies with low-GWP gases (broadly)	U Oviedo, CERN, U Wurzburg, INFN-BA, INFN-LNF, INFN-BO, INFN-PV, IRFU/CEA, U Coimbra, VUB and UGent, IP- PLM, LMU, U Aveiro, INFN- RM2, Istiyu U, HYU
T6	Manufacturing	 Construction of large- area detectors at low cost Modular design Technology transfer strategy and training center for production 	WG3 (3.2E), WG6, WG8	1.3	Optimization of the manufacturing pro- cedure to minimize time-consuming or costly steps	 Design and manufacturing of large-area detector Large-area DLC production CERN: MPGD based manufac- turing capabilities and large-area modules (design and prototyp- ing). Note: MPT Workshop 	U Heidel- berg, USTC WIS, GSI INFN-NA, INFN-RM3, INFN-BO, UW-Madison, IPPLM, LMU INFN-RM2, Istinye U Wigner, CERN
T7	Thinner layers and in- creased mechanical pre- cision over large areas	- Test to experience the ultimate limits to thin- ning down the detector	WG3 (3.2E), WG5, WG7 (7.1.2)	1.3			INFN-BA, INFN-LNF, IPPLM, LMU INFN-RM2
T8	Longevity on large de- tector areas	 Study discharge rate and the impact of irra- diation and transported charge (up to C/cm²) 	WG1, WG3 (3.1B, 3.1D, 3.2B), WG4, WG7 (7.1,3)	IJ	- Discharge probability - Ageing		WIS, INFN- NA, INFN- RM3, INFN- LNF, IRFU/CEA, U Coimbra IPPLM, LMU INFN-RM2, INFN-BO
T9	Low-mass MPGDs for inner-tracking at low- energy ee colliders	 development of low- mass planar cylindrical mechanics 	WG5		 low-mass cylindrical micro-RWELL for In- ner tracker 	- Prototype test	INFN-LNF
T10	Develop robust, com- pact, and low power DAQ for low rates	 256 channel readout 100 W or less 1200 cc DAQ volume Rugged design for remote (<1 km), e.g. underground operations 	WG5		- Muon rates from few Hz to few events per day	 Deployed and tested at depth 	OXY

WP2: Inner and central tracking with PID

Challenges/tasks

• Mechanics: new wiring procedures, new wire materials

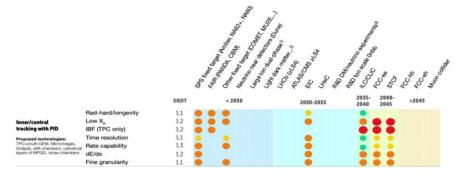
High gas gains ~5×10⁵, required for the application of the cluster counting techniques, high granularities (small cell size, order of 1 cm), long wires (order of 4-5 m) and electrostatic stability demand studies on new light materials with high YTS for wires.

Electronics: on-line, real time data processing algorithms

Waveform digitizers, signal processing for cluster counting exploiting new data processing algorithms

• Hydrocarbon-free gas mixtures / recirculating gas systems

Safety requirements (ATEX) on flammable gases and ever-increasing costs of noble gas


#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	Development of front-end ASICs for cluster count- ing	 High bandwidth High gain Low power Low mass 	WG5, WG7 (7.2)	1.1, 1.2	 Achieve efficient clus- ter counting and cluster timing performances 	 Full design, construc- tion and test of the first prototype of the front- end ASIC for cluster counting 	IHEP CAS CNRS-LSBB INFN-RM1, INFN-LE, INFN-PD, INFN-BA, INFN-TO, SBU, IPPLM
T2	Develop scalable multichannel DAQ board	 High sampling rate Dead-time-less DSP + filtering Time stamping Track triggering 	WG5, WG7 (7.2)	1.1, 1.2	 FPGA-based architec- ture ML algorithms-based firmware 	 A working prototype of a scalable multichan- nel DAQ board 	IHEP CAS INFN-LE, INFN-BA, UW-Madisor IPPLM, INFN-BO
T3	Mechanics: de- velop new wiring procedures and new end-plate concepts	 Feedthrough- less wiring More transpar- ent end-plates (X < 5%X₀) 	WG3 (3.1C)	1.1, 1.3	 Separate the wire sup- port function from the gas containment func- tion 	 Conceptual designs of novel wiring procedures Full design of innova- tive end-plate concepts 	USTC, GANIL, CNRS- IN2P3/JUCLai CNRS-LSBB GSI, MPI INFN-RM1, INFN-LE, INFN-BA, INFN-PD, CERN, PS U Mancheste SBU, Wigner
T4	Increase rate ca- pability and gran- ularity	 Smaller cell size and drift time Higher field-to- sense wire ratio 	WG3 (3.2E), WG7 (7.2)	1.3	 Higher field-to-sense wire ratio allows in- creasing the number of field wires, decreasing the wire contribution to multiple scattering 	 Performance evalua- tion on drift-cell proto- types at different granu- larities and with differ- ent field configurations 	USTC, CNR3 IN2P3/JJCLa CNRS-LSBB MPP, Bos INFN-RM1, INFN-LE, INFN-BA, CERN, PS U Bursa, Manchester, SBU, INFP BO
T5	Consolidate new wire materials and wire metal coating	Electrostatic sta- bility High YTS Low mass, low Z High conductiv- ity Low ageing	WG3 (3.1C)	1.1, 1.2	 Establish contacts with companies produc- ing new wires Develop metal coating of carbon wires 	- Construction of a mag- netron sputtering facil- ity for metal coating of carbon wires	GSI, CNR IN2P3/IJCLa CNRS-LSBB INFN-RM1, INFN-BA, CERN, PS U Mancheste SBU, INFY BO
T6	Study ageing phe- nomena for new wire types	 Establish charge-collection limits for carbon wires as field and sense wires 	WG3 (3.2B), WG7 (7.3,4)	1.1, 1.2	 Build prototypes with new wires as field and sense wires 	 Prototype tests in- beam and at irradiation facilities Measurement of per- formance and depen- dence on total inte- grated charge 	CNRS- IN2P3/IJCLa INFN-RM1, INFN-LE, INFN-BA, INFN-BO
Τ7	Optimize gas mixing, recupera- tion, purification and recirculation systems	Use non- flammable gases Keep high quenching power Keep low-Z Increase radia- tion length Operate at high ionization density	WG3 (3.1B, 3.2C), WG4, WG7 (7.4)	1.3	 ATEX and safety requirements Attention to the cost of gas Hydrocarbon-free mixtures 	Study the performance of hydrocarbon-free gas mixtures Implement a complete design of a recirculating system	MPP, INFN RM1, INFN LE, INFN-B/ PSI, U Burs SBU, IPPLN U Aveir Wigner

WP3: Inner and central tracking with PID

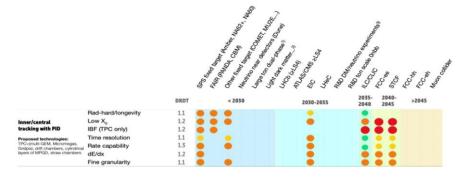
(STRAW CHAMBERS)

Challenges/tasks

- Mechanics: thinner, smaller diameter, longer straw tubes / mechanical stability
 6+6 μm mylar + 3 μm glue wound-type or 25 μm seamless (resistive) type, few mm diameter,
 several m length /self-supporting structures
- Material studies

Creep under tension (tension relaxation), gas leakage (operation under vacuum or overpressure)

Electronics


Leading and trailing time resolution for 4D measurements and for dE/dx with time over threshold

Ĩ	#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
	TI	Optimize straw materials and technology	Develop thin films and metallization Resistance to ageing Low cross-talk Establish material re- laxation control Gas leakage control Compatible with oper- ation in vacuum	WG1, WG3 (3.1C, 3.2B), WG6, WG7 (7.1- 4)	1.1 1.2 1.3		 Design and pro- duction of materi- als Production of straw tubes 	CERN, JU- Krakow, U Manchester, U South Carolina, U Hamburg
	T2	Develop small- diameter straw tubes (< 4 mm) for highest rate capability	 Rate capability >500 kHz/cm² Fast timing (<50ns) Charge load >10 C/cm 	WG1, WG7 (7.1- 3)	1.1 1.2 1.3	Wire centering Electrostatic stability Establish assem- bly techniques and tools - Ultrasonic- welding PET Straw tracker mechanics	 Straw materials and tube design Film tube pro- duction Establish the technique for straw-tube assem- bly Prototype setup with several channels 	
,		Develop straw tubes of 5 mm- diameter	 Faster timing (<100 ns) High rate capability, O(100 kHz/cm²) 					MPP, HUJI, INFN-PV, AGH- Krakow, JU- Krakow, CERN, U Bursa, U Manchester, U South Carolina, KEK-IPNS
		Develop ultra- thin film walls	- < 20 μ m thickness - $X/X_0 \sim 0.02\%$ per straw - Film metallization - New film materials and new technologies (e.g. nano-fibre)					INFN-PV, JU- Krakow, U Manchester, U South Carolina, KEK-IPNS
		Develop ultra- long straws (up to 4 m)	 Establish good me- chanical properties 					HUJI, INFN-PV, JU-Krakow, CERN, U Manch- ester, U South Carolina, INP- Almaty, U Hamburg
	Т3	Optimize straw tracker mechanics	 Develop self- supporting modules Control relaxation Develop a method for straw alignment 	WG1, WG3 (3.2E), WG6, WG7 (7.1)	1.1 1.2 1.3	 Design of all mechanical tools QA 	 Develop assem- bly technique Prototype con- struction 	HUJI, JU- Krakow, CERN, U Bursa, U Manchester, FZJ- GSI-U Bochum, U Hamburg, U South Carolina, IFIN-HH

WP3: Inner and central tracking with PID

(STRAW CHAMBERS)

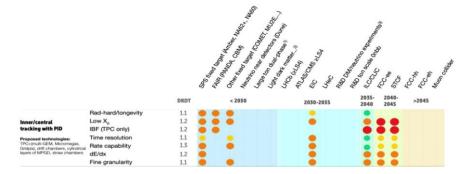
Challenges/tasks

- Mechanics: thinner, smaller diameter, longer straw tubes / mechanical stability
 6+6 μm mylar + 3 μm glue wound-type or 25 μm seamless (resistive) type, few mm diameter,
 several m length /self-supporting structures
- Material studies

Creep under tension (tension relaxation), gas leakage (operation under vacuum or overpressure)

Electronics

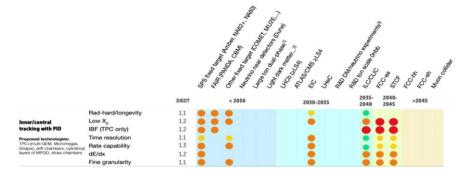
Leading and trailing time resolution for 4D measurements and for dE/dx with time over


threshold

#	Task	Performance Goal	DRD1 WGs	ECFA	Comments	Deliv. next 3y	Interested Insti- tutes
T4	Optimization of electronic readout and ASIC devel- opment	Time readout with sub-ns precision Leading and trailing edge time readout	WG5, WG7 (7.1- 2)	1.1	- Dedicated R&D on ASIC	 ASIC development Development of readout system 	INFN-PV, MPP, HUJI, JU-Krakow, AGH-Krakow, CERN, U Bursa, U Manchester, U South Carolina, INP-Almaty
T5	3D/4D-Tracking and PID via dE/dx	- Spatial resolution <150 μm - T ₀ -determination with ≈ns resolution - p/K/π-separation at p <i c<="" gev="" td=""><td>WG1 WG4 WG7</td><td>1.1</td><td></td><td>Development of SW algorithms Analysis of (in- beam) test data</td><td>MPP, INFN-LE, INFN-PV, AGH- Krakow, JU- Krakow, CERN, U Manchester, Istinye U, FZJ- GSI-U Bochum, INP-Almaty, U Hamburg</td></i>	WG1 WG4 WG7	1.1		Development of SW algorithms Analysis of (in- beam) test data	MPP, INFN-LE, INFN-PV, AGH- Krakow, JU- Krakow, CERN, U Manchester, Istinye U, FZJ- GSI-U Bochum, INP-Almaty, U Hamburg
T6	Longevity	 Ageing resistance > 1 C/cm for thin-wall straws Ageing resistance > 10 C/cm for straws and highest particle rates 	WG1, WG3 (3.2B), WG7 (7.2)	1.1	Test at various DRD1 test facili- ties	Prototype mea- surements	CERN, JU- Krakow
T7	Software	Straw tube simulation and calibration Event simulation Pattern recognition Tracking and PID Tracker alignment	WG4	1.1, 1.2	 Garfield, Geant Alignment, e.g. Millepede Real-time processing 	 Development of new analysis al- gorithms and ap- plications to (in- beam) test data 	FZJ-GSI-U Bochum, CERN, U South Carolina, INP-Almaty, U Hamburg, U Aveiro, Istinye U, IFIN-HH

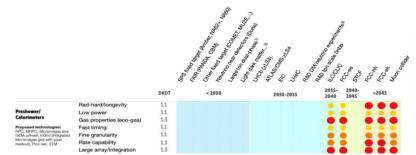
WP4: Inner and central tracking with PID

(LARGE VOLUME TRACKING TPCS)


- · High rate,
- Low mass,
- Granularity,
- dE/dx & cluster counting
- Ion backflow suppression,
- Gas mixture optimization and Eco gas mixtures

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	IBF reduction	 Gain×IBF ≈ 1- 2 IBF optimiza- tion together with energy resolution and discharge sta- bility 	WG4, WG7 (7.1- 2,5)	1.2	Hybrid stacks Gating GEM Distortion correc- tions Space-charge mon- itoring Development of simulation tools Operation in mag- netic fields	 Provide a large-area pro- totype with a uniform IBF distribution of G*IBF=5 keeping the energy resolu- tion at a tolerable level Present a structure with stable settings for G×IBF of 1-2 Determine the ion block- ing power of a GEM-based gate Provide systematic stud- ies and simulations of IBF performance for the most common structures in (high) magnetic fields Introduce an IBF calcu- lator (Garfield-based) for optimization of the HV parameters 	IFUSP, GSI, U Bonn, IRTU/CEA, USTC, KEK- IPNS, DESY, GANIL, RWTH Aachen, INFN-PD, IP- PLM, CERN, PSI, U Bursa, SBU, WIS, U Coimbra, U Aveiro, Wigner, SINP Kolkata
T2	Pixel-TPC de- velopment	 Produce 50000- 60000 GridPixes to read out a full TPC Achieve dN/dx counting- resolution < 4% 	WG5, WG7 (7.1- 2,5)	1.1	 InGrids (grouping of channels) Low-power FEE Optimization of pixel size (>200 µm) or cost reduction 	 Provide a large-area pixel-based (InGrid) read- out module Measuring IBF for Gridpix. Reduction with double-mesh Present dN/dx measure- ments in beam Small area prototypes of MPGD/TimePix hybridis- ation. 	U Bonn, U Carleton, WIS, CERN
T3	Optimization of the am- plification stage and its mechanical structure, and development of low X/X_0 field cages (FC)	 Uniform re- sponse across readout unit-area. Keep order/at 24% Point resolution of <100 µm Minimize static distortions by re- ducing insensitive areas Minimize E×B Achieve E-field homogeneity at ~10⁻⁴ level 	WG1, WG4, WG7 (7.1- 2,5)	1.1	Minimization of static distortions: - Algorithms for dis- tortion corrections - Field shaping wires - Minimize - Field shaping wires - Minimize - Minimize GEM frame area (use - thicker GEMs) - Laser systems - Main ampl. stages: - Encapsulated resistive-anode MMG - Multiple GEM - GridPtx - Hybrids FC: - high-quality strips, - module fatness - module fatness	 Provide a solution for a large-volume TPC with Q(10⁶) pad-readout by means of pre-production of several readout modules of comparable quality 	IRFU/CEA, U Bonn, IHEP CAS, USTC, GANIL, CNRS- IN2P3/JJCLab, GSI, RWTH Aachen, INFN-RMI, INFN-RMI, INFN-BA, IPFLM, PSI, U Bursa, SBU, BNL, WIS, IFAE

WP4: Inner and central tracking with PID


(LARGE VOLUME TRACKING TPCS)

- · High rate,
- · Low mass,
- Granularity,
- dE/dx & cluster counting
- Ion backflow suppression,
- Gas mixture optimization and Eco gas mixtures

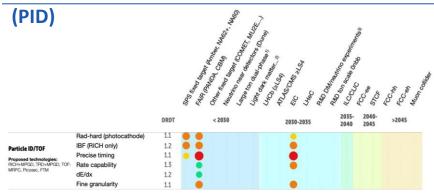
#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
T4	Low-power FEE	 <5 mW/ch for >10⁶ pad TPC ASIC development in 65 nm CMOS 	WG5	1.3	- Continuous vs. pulsed	 Present stable opera- tion of a multi-channel TPC prototype with a low- power ASIC 	IHEP CAS
T5	FEE cooling	- Operate 10 ⁶ channels per end-plate	WG5	1.2	Two-phase CO ₂ cooling Micro-channel cooling with 300 µm pipes in carbon fiber tubes 3D printing: com- plex structures, performance opti- mization, material selection	 Present a prototype of a cooling system for the 10⁶ pad TPC option 	IRFU/CEA, U Lund, INFN- PI, INFN-LE INFN-PD
Τ6	Gas mixture	Optimize: - Longevity - Ageing - Discharge prob- ability - Drift velocity - Ion mobility	WGI, WG3, (3.1D, 3.2A, 3.2B), WG4, WG7 (7.1- 3,5)		 Discharge probability, ageing, gas properties Optimization of the HV working point Optimization wrt. the expected resolution (aim for <100 µm) Cluster ions 	 Lower the discharge probability of readout units by 1-2 orders of magnitude down to ~10⁻¹⁴ per hadron Avoid secondary dis- charges in MPGD stacks 	CERN, IFUSP, GSI IFUSP, GSI USTC, CNRS, IN2P3/UCLab IRFU/CEA, CNRS-LSBB, RWTH Aachen, U Bonn, Bose INFN-RMI, NFN-LE, INFN-PD, INFN-EA, INFN-BA, INFN-BA, USC/IGFAE, U BURA, SBU U Warwick U Averior, U Bolu-Abant

WP5: Calorimetry

Challenges to develop large detector area

- Uniformity of the response and dynamic energy range
- Rate capability (x resistive material detector): 1 kHz/cm²
- Time resolution O(100ps)

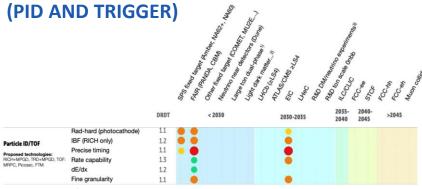
Not necessarily for large-area:


- + Eco-gas mixture
- + Stable performance (gas gain, time resolution, etc)

+	High	radiation	hardness
---	------	-----------	----------

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
TI	Development of high-granularity demonstrators	- Cell size ≈ 1 cm ² - Channel count $\approx 10k$ per m ²	WG5, WG7 (7.2)	1.1	 Innovative signal- induction structures to balance readout cost and performance Front-end electronics 	- Performance validation of a technology demonstrator in- beam	UUB and UGent, IP2I, MPP, WIS, INFN-RM2, CERN, INFN-RM3, INFN-BA, INFN-RM3, INFN-BA, INFN-LNF, CIEMAT, Istinye U, U Cambridge
T2	Gas Studies	- Gas mixture operation with low environ- mental impact (low-GWP)	WG3 (3.1B, 3.2C), WG4, WG7 (7.1-4)	1.1,1.3	 Improvement of recuperation and recirculation systems Longevity studies Ecological gas mixtures without F-gases 	 Performance stability results with lower % of fresh gas Identification of an eco- gas mixture with performance comparable to the standard one 	VUB and UGent, IP2I, MPP, INFN-RM2, CERN, U Bursa, WIS, IPPLM, CIEMAT, U Aveiro, Istinye U
Τ3	Mechanics opti- mization	 Uniform re- sponse over large surface ≈1-2 m² 	WG3 (3.2E), WG7 (7.1-2)	1.1	 Optimization of de- tector structures to minimize dead area Development of large-scale MPGD construction techniques Production of high planarity, large-area PCBs for MPGDs Mechanical fabri- cation of very thin high-Pressure Lami- nate and glass RPCs Uniform resistivity Uniform gas gain 	 Construction of a first full- scale prototype and perfor- mance assessment Establish QC and QA proce- dures for mass production 	VUB and UGent, IP2I, MPP, INFN-RM2, IFIN-HH, USTC, INFN-RM3, WIS, CIEMAT, Istinye U

WP6: Photo-detectors

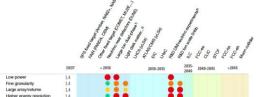


- Preserve the photocathode efficiency by IBF and more robust photoconverters
- Very low noise, large dynamic range of the FEE
- · Separate the TR radiation and the ionization process

#	Task	Performance	DRD1	ECFA	Comments	Deliv. next 3y	Interested Insti-
TI	Increase photo- cathode efficiency and develop ro- bust photocon- verters	Goal Improve: - Longevity - QE - Extend to the visible range - Rad-hardness up to 10 ¹¹ n _{eq} /cm ²	WGs WG3 (3.1C), WG6, WG7 (7.1-4)	DRDT 1.1	 Study hydrogenated nanodiamonds Study diamond-like carbon (DLC) 	 Demonstrate the performance of nanodiamond-powder photocathodes in terms of their chemical reactivity and ageing Provide a detailed characterization of QE of new photocathode materials, e.g. DLC 	tules INFN-TS, CERN, HIP, IRFU/CEA, NISER Bhubaneswar, U Coimbra, LMU, U Aveiro, RBI, Wigner
T2	IBF suppression, discharge protec- tion	 IBF reduction down to 10⁻⁴ and below Stable, high gain operation up to 10⁵-10⁶ Operation in magnetic field 	WG4, WG7 (7.1,5)	1.2	Multi-Micromegas de- tectors Zero IBF detectors New structures (Co- bra, M-THGEM, and coating materials (Mo) Grids: bi-polar grids, gating GEM	 Demonstrate a small-area new structure or stack of structures providing stable op- eration at high gains and low IBF performance 	USTC, INFN-TS, INFN-PD, INFN- PV, TUM, WIS, U Bonn, HIP, IRFU/CEA, NISER Bhubaneswar, CERN, MSU, SBU, JLab, BNL, U Coimbra, IP- PLM, U Aveiro, RBI
Т3	Gas studies	- Develop eco- friendly gas radiators and, in particular, ex- plore alternatives to CF ₄	WG3 (3.2A), WG4, WG7 (7.2,4)	1.1, 1.3	- Identification of eco- friendly gas mixtures free from greenhouse gases - Alternatives to CF ₄ for optical readout		CERN, NISER Bhubaneswar, HUJI, GSSI, INFN-PD, INFN-TS, AGH- Krakow, IPPLM, USC/IGFAE, U Aveiro
T4	FEE	Stability at high input capacitance - Low noise - Large dynamic range	WG5	1.2		- Present an ASIC con- cept/prototype	IFUSP, NISER Bhubaneswar, INFN-PD, INFN-TS, AGH- Krakow, IPPLM, U Manchester, MSU, SBU, JLab, DIPC
T5	Enhance mechan- ics	 High-pressure operation Improve gas tightness 	WG6	1.3			NISER Bhubaneswar, HUJI, GSSI, USC/IGFAE, CERN, MSU, JLab, DIPC, IPPLM, RBI
T6	Precision mea- surements	 Time resolution ≤ 100 ps Spatial resolution ≤ 1 mm 	WG7.2		- MPGD: PICOSEC		CERN, IPPLM

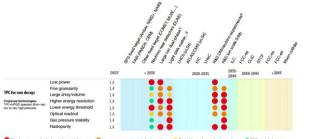
WP7: Timing detectors

- Uniform rate capability, time resolution, and efficiency over large detector area
- New material for high rate (low res., rad.hard.): uniform gas distribution, spacer material, spacer geometry, thinner structures: mechanical stability and uniformity
- Eco-gas mixture, Gas recuperation systems
- Electronics: Low noise, fast rise time, sensitive to small charge


						-	
#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	Optimize the amplification technology	- Uniformity over m ² (time resolu- tion, rate capabil- ity, efficiency)	WG1, WG6, WG7 (7.1- 2,4)	1.1-1.3	PICOSEC Position-sensitive timing RPC Ultra high-rate timing RPC development DLC-based timing RPC GaAs timing RPC Resistive Cylindrical Chamber RCC	 Provide a large-area, multi- channel prototype of an MPGD- based timing detector 	CERN, IRFU/CEA, U Soña USTC, HIP, GANIL, IP21 MPP, U Heidelberg, NCSF Demokritos, INFN-BX, INFN-PD, INFN-PV, LIP Coimbra, U Bursa, MSU SBU, JLab, U Hamburg, RBI U Tsinghua, INFN-RM2
T2	Enhance timing	- Time resolution < 20 ps up to 30 kHz/cm ²	WG3 (3.2A, 3.2D), WG4, WG7 (7.2)	1.1	MPGD:PICOSEC	- Present large area MPGD timing detector capabilities in beam	CERN, IRFU/CEA, USTC HIP, GANIL, IP2I, MPP NCSR Demokritos, INFN PD, INFN-PV, U Bursa, SBU JLab, MSU, UW–Madison, U Hamburg, RBI
Т3	Enhance rate ca- pability	- Time resolution < 50 ps up to 100- 150 kHz/cm ²	WG3, WG4, WG7 (7.2)	1.3	RPC: - Gap thickness - Number of gaps - Thin, Iow-R glass - Single cell layout - GaAs timing RPC - Resistive Cylindrical Chamber RCC PICOSEC: use at high rate	- Provide a pro- totype for >100 kHz/cm ² rate ca- pability	CERN, IRFU/CEA, U Sofia, USTC, HIP, GANIL IP21, MPP, U Heidelberg NCSR Demokritos, INFN- BA, INFN-PD, INFN-PV LIP-Coimbra, U Bursa, U Manchester, MSU, SBU JLab, CIEMAT, VUB an UGent, Istinye U, INFN-RM
T4	Material studies	- Rad-hardness - Longevity	WG3, WG7 (7.3,4)	1.1-1.3	- Low-resistivity glass - Spacers - Photocathodes - Photoconverters - GaAs - HPL or phenolic glass		INFN-PV, CERN, USTC RBI, MPP, U Heidelberg, U Manchester, RBI, INFN-RM
T5	Low-noise FEE	High input capacitance Large dynamic range Fast rise time Sensitivity to small charges Low noise	WG5	1.2		- ASIC de- sign - Full readout-chain for multichannel readout solutions for timing ≈10 ps (discrete and ASICs)	USTC, IP2I, IRFU/CEA GSI, MPP, INFN-PD, INFN PV, LIP-Coimbra, CERN U Manchester, MSU, SBU JLab, INFN-TO, RBI, U Tsinghua, INFN-RM2
T6	Space charge ef- fects, IBF and sta- bility		WG4, WG7 (7.1- 2,5)		 Simulations High gain operation Synergy with trackers and TPCs 		CERN, GSI, U Aveiro, U Ts inghua
Τ7	Gas studies	Eco-friendly mixtures Recuperation Ageing CO ₂ based mixture with geometrical quenching	WG3 (3.2A, 3.2B, 3.2C), WG7 (7.2-4)	1.3	 Low-GWP solutions for saturated-avalanche operation 	- Gas mixtures for MPGD(PICOSEC) based timing detectors (re- placement of Ne, CF4, C2H6)	U Sofia, USTC, HIP, GANIL IP21, MPP, U Heidelberg INFN-BA, INFN-PV, LIP Coimbra, CERN, MSU, SBU JLab, LMU, U Aveiro, INFN RM2

WP8: TPCs as reaction and decay chambers

(RARE EVENTS, NEUTRINO PHYSICS, NUCLEAR PHYSICS)


- Reconstruct low-energy nuclear tracks (down to 10 keV energy-scale) with high granularity and close to the thermal diffusion limit.
- · Low energy threshold (keV or less) far from atmospheric pressure (10mbar-20bar).
- · Achieving high and uniform amplification in nearly pure or weakly-doped noble gases
- · Increasing optical throughput (primary and secondary)
- Developing more suitably scintillating and/or eco-friendly gas mixtures as well as recuperation systems;
- · Enhancing the radiopurity of the amplification structure and of the TPC as a whole

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
TI	Enhanced oper- ation of optical readout across gas densities	 Achieve an initiation of the second se	WG1, WG6, WG7	1.2, 1.4	 High optical gain across gas densities in pure CF4 and CF4- based mixtures with keV-sensitivity. Fine track sampling capabilities in the range of U/o of µm to few mm. Adaptations in optics and camera readout to cover larger areas, and low granularity and with drift-time informa- tion (3D-readout). Simultaneous detec- tion of low and high ionization particles. 	 Low-pressure nuclear track reconstruction at ≈10 keV. Low-pressure electron-track reconstruction of nu- clear tracks at ≈100 keV. MP tracking at 10 bar in argon-based gas mixture. Reconstruction of MeV- nuclei with mm and sub-num sampling at varying pressure and gas conditions. Stability of reconstruction of nuclear-reaction byprod- ucts over a larger range of pri- mary ionizations. 	CERN. GANIL ANU, IRFUCEA. USC/GFAE. GSSI. INFN- RMI. INFN-PD, INFN-BA, INFN- RMI. INFN-BA, INFN- LNF, U New Mexico. STFC RAL, IFIC, U Liverpool. U Genève, U War- wick. U Coimbra, Fermilab, MSU, U Bolu-Abat, WIS, DIPC, U Hamburg, IFAE, AUTH
T2	Enhanced oper- ation of charge readout across gas densilies	 Achieve an ionization-energy threshold or at threshold or at threshold or at threshold or an an	WG1, WG5, WG6, WG7	1.2, 1.4	 High avalanche gains across gas densities in CF4, H2, He, Ar, Xe-based TPCs with e-paralities in the range of 10% of µm to few of 10% of µm to few of 10% of µm to few of 10% of µm to few min. High-density and low-power electronics, with the ability to self-trigger. TimePt-based charge readouts. 	 Low-pressue nuclear track reconstruction at ≈10 keV. 1 keV ionization-energy threshold a high pressue. FOM NV 3-protocontragange at 10 constrained for the second second sampling at varying pressue and gas conditions. Stability of reconstruction of mckear-encidon byprod- uids over a large range of pri- mary ionizations. 	IRFUCEA. GANIL U Bonn, ANU, U Zangoza, Hermilab. Wils, Children, Will, With Aachen, HUJI, U Bursa, WIS, CNRS- INP2FUGA. U Bolu-Ahant, U Coim- bra, INFN-LNS, SNP Kolkata, U Hanburg, U New Mexico, AUTH, U Kobe
T3	Enhanced op- cration of pure or trace-amount doped noble gases	- Operation of m ² and ton-scale detectors with single-electron sensitivity and near-Fano level energy resolution	WG1, WG3 (3.2C) WG6, WG7	1.4 (and DRD2)	Enhancement of electroluminoscence (EL) yield in noble gases (scalability, light output). Single-electron detec- tion. Nar-Fano energy resolution. Stabilization of trace- amound doping (mixing, purification). Stable amplification in dual-phase detectors. Develop novel ampli- lection structures	 Developing large-area (≥m²-scale) EL amplification: keeping energy resolution and single-electron sensitivity. Imaging in low-diffusion gas. A viable concept for Barium tagging on a viable roadmap towards it. Very large-area (≥10m²- scale) camar-based 3D imaging. Operation of resistive- protected detectors. 	DIPC, IFIC, U Liverpool, U Liverpool, U Coimbra, AstroCeNT, Ben- Gurion U, WIS, U Aveiro, AUTH

WP8: TPCs as reaction and decay chambers

(RARE EVENTS, NEUTRINO PHYSICS, NUCLEAR PHYSICS)

Must happen or main physics goals cannot be met 💗 important to meet several physics goals 👋 Desirable to enhance physics reach 🔮 RBU needs

- Reconstruct low-energy nuclear tracks (down to 10 keV energy-scale) with high granularity and close to the thermal diffusion limit.
- · Low energy threshold (keV or less) far from atmospheric pressure (10mbar-20bar).
- · Achieving high and uniform amplification in nearly pure or weakly-doped noble gases
- · Increasing optical throughput (primary and secondary)
- Developing more suitably scintillating and/or eco-friendly gas mixtures as well as recuperation systems;
- Enhancing the radiopurity of the amplification structure and of the TPC as a whole

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
T4	Ultra-low-energy reconstructions fracks (includ- ing R&D on negative-ion read- out)	 Tracking of >Vl0keV muclear tracks in a con- cept scalable to m² and beyond 	WG1, WG5, WG6, WG7	1.2, 1.4	Track reconstruction of nuclei down to 10 keV energies or below. Simultaneous tracking of nuclei and electrons. Accurate dE/Atc- sampting for electron and nuclei identifica- tion. ML for complex tropologies. Negative-ion TPCs for Dytracking on large areas, and associated electronics. Optical readout in a negative ion TPC. Track-reconstruction on spherical counters.	 A technology demon- strator in the m³ scale, with # 010keV tracking- threshold for maclear tracks at # 2018 of µm sampling. 	CERN, GANIL, ANU, IRFUCEA, GSSI, INFN-RMI, INFN- PD, U New Mexico, STFC-RAL, MSU, UH Manoa, U Kohe, HEP CAS, USTC, U Bolu- Abant, LIP-Coimbra, U Marwick, WIS, CNRS- IN2PVUGA, ISNAP, U Garwick, US, CNRS- IN2PVUGA, ISNAP, U Coimbra, INFN-LNS, SINP Kolkata, U Ham- burg, AUTH, U Kobe
T5	Determination of the interaction time (T_0)	 Achieve a viable timing signal while keeping low electron dif- fusion and high amplification of the ionization signal 	WG3 (3.1A)	1.4 (and DRD2)	 To sensitivity for accelerato-based neu- trino TPCs. To sensitivity in the reconstruction of low- energy nuclear recoils, via scintillation light or minority carriers in case of negative-load TPCs. Explore the appli- cability of alternative methods (diffusion, positive ions) To-determination on spherical counters. 	 Demonstration of track reconstruction and Tg-tagging for mini- mum ionizing particles at ≈1MeV-threshold and high pressure. 	IFIC, U Liverpool, As- troCeNT, Ben-Gurion U, U Zaragoza, GSSI, USC/GFAE, Fermilab, DIPC, ANU, WIS, U Hamburg, U New Mexico
T6	Modelling	 Develop a microscopic framework for computing scin- tillation and negative-ion yields, and trans- port 	WG3 (3.1A, 3.2A), WG4	1.3,1.4	Modelling primary scintillation. Modelling secondary scintillation. Modelling ion trans- port and avalanche for electronegative mix- tures. Modelling space charge.	 Develop a framework for optical simulation that is integrated as part of the standard commu- nity tools, or develop a concrete implementa- tion path towards it. 	CERN, U Bursa, USC/IGFAE, IFIC, U Aveiro, Astro- CeNT, GSSI, U Kohe, INFN-BA, WIS, DIPC, U Coimbra, SINP Kolkata, U Hamburg, U Aveiro, AUTH
T7	Gas mixtures and gas handling	Study new gas mixtures, oper- ated in conditions of high purity	WG3 (3.1B, 3.2C), WG6, WG7	1.3, 1.4	 New gas mixtures for optical readout. New gas mixtures for negative-ion readout. Recirculation and re- cuperation systems. Purification of low- quenched mixtures. 	 Develop alternatives to CF4-based mixtures op- erated in open loop, or a viable path towards it. 	USC/IGFAE, DIPC, U Coimbra, CERN, U Liverpool, GSSI, INFN- RM1, U Zaragoza, Fermilab, RWTH Aachen, U Warwick, WIS, DIPC, ISNAP, U Hamburg, U Aveiro, U New Mexico, AUTH
T8	Radiopurity	 Improve manufacturing process and purifica- tion as well as material-selection standards 	WG3		 Radon emanation studies Mitigation of gaseous radioactive isotopes Material selection Develop radiopure amplification structures and radiopure optical cameras. 	 Develop MPGDs and manufacturing techniques with high radiopurity. 	USC/IGFAE, DIPC, U Liverpool, GSSI, U Zaragoza, U Hamburg, U Kobe

(WP9: Beyond HEP)

CERN

- No WP9 in the proposal draft
 - No clear tasks/projects/interests could be identified in the Survey
 - No BHEP Applications in the ECFA Roadmap
- 1st Community feedback: clear need of the Beyond HEP WP
- We can identify different tasks/projects:
 - muography and large area applications;
 - dosimetry/beam monitoring and medical imaging applications (PET, CT, X-ray, SPECT, Gamma cameras, or X-ray fluorescence imaging);
 - fast/thermal neutron imaging (MPGD-based readout with solid converter for tomography and nuclear waste monitoring;

18:00

- X-ray polarimetry and space applications;
- Let's discuss today afternoon, before dinner

1		_	WG2 Applications	WG	1 WG3	WG4	WG5	WG6	WG7	WG8	
DRDT1.1	DRDT1.2	DT1.3	Inner and central tracking with PID capability							1 1	
DRC	DRC	DRC	Photo-detectors (PID)							1 6	
			Timing detectors (PID and trigger)							1 6	
	1		Genuine Trackers/Hodoscopes (large area muon systems, inner tracking/vertexing)							1 6	
			Calorimetry			tools				1 6	
_	Ì	1.4	TPCs as reaction and decay chambers (rare events, neutrino physics, nuclear physics)			software				1 6	
						d soft	S			1 [
			Working Groups (research line) are core of the collaboration			is and	detectors				
•			 physics driven; promoting open environment, young researchers 		es	simulations				ation	
1			Working Groups participates in Work Packages		studies		gaseous	ы	lities	dissemination	
			Work packages communicate to and with DRD1 community	es	material	/sics,		production	Common test facilities		
			 Don't operate in a vacuum 	ilogi	d ma	r phy	nics f		on tes	g and	
			 Funded by funding agencies 	echnologies	as and	Detector physics,	Electronics for	Detector	mmc	Training	
				Чe	Gas	ڡ	Ĭ	ڡ	ŏ	μ	

Work Packages - next steps (general discussion)

(on behalf of WP coordinators)

DRD1 Community Meeting 22 June 2023

1		_	WG2 Applications	WG	1 WG3	WG4	WG5	WG6	WG7	WG8	
DRDT1.1	DRDT1.2	DT1.3	Inner and central tracking with PID capability							1 1	
DRC	DRC	DRC	Photo-detectors (PID)							1 6	
			Timing detectors (PID and trigger)							1 6	
	1		Genuine Trackers/Hodoscopes (large area muon systems, inner tracking/vertexing)							1 6	
			Calorimetry			tools				1 6	
_	Ì	1.4	TPCs as reaction and decay chambers (rare events, neutrino physics, nuclear physics)			software				1 6	
						d soft	S			1 [
			Working Groups (research line) are core of the collaboration			is and	detectors				
•			 physics driven; promoting open environment, young researchers 		es	simulations				ation	
1			Working Groups participates in Work Packages		studies		gaseous	ы	lities	dissemination	
			Work packages communicate to and with DRD1 community	es	material	/sics,		production	Common test facilities		
			 Don't operate in a vacuum 	ilogi	d ma	r phy	nics f		on tes	g and	
			 Funded by funding agencies 	echnologies	as and	Detector physics,	Electronics for	Detector	mmc	Training	
				Чe	Gas	ڡ	Ĭ	ڡ	ŏ	μ	

Work Packages

- Encompass long-term projects with significant strategic R&D goals and corresponding funding lines.
- Way to get funding
- Way to get involved in strategic R&D

DRD1 proposal: Institutes can still be added/removed from the individual WP and their tasks

- It is not required to be involved in a WP to be a member of DRD1
- It is required to be a member of DRD1 to contribute to a WP

A Work Package:

- Can be initiated at any time and will be internally organized and coordinated by the participating institutes (WP Coordinator should be defined from the active WP member)
- The participating institutes will define the WP scope, deliverables, work plan, and the necessary resources in detail.
- The participating institutes will have complete control and operational authority over the allocated resources.

To establish the proposed activities and secure the required resources,

- a formal agreement will be established among the participating institutes, funding agencies, DRD1 management, and the host
 lab (CERN) → being sorted out by CRN management
- Each Work Package Agreement will be included as an annex in the DRD1 MoU → being sorted out by CRN management
- WPs will report to DRD1 and undergo review by the Detector Research and Development Committee (DRDC).
- The funding for WPs will be provided to the participating institutes by their respective Funding Agencies.
- The involved Funding Agencies will be responsible for approving the WPs and overseeing their progress

WP - Review

"WP reports" to DRD1. Once per year (or more – discussion):

- The WPs will report their achievements/status/plans to DRD1
- New WPs can be proposed and accepted by the DRD1
- Institutes can join/leave WPs
- Apart from that, all WP activities can be reported regularly in the form of contributions to DRD1 collaboration meetings where full collaboration can provide support to the WP activities

DRD1 will not review the resources of the WPs

- Resources of the WPs stay at the institute
- DRD1 resource review at CERN will not review WP resources

DRDC

- Can organize WP resource reviews

31

- For the finalization of the DRD1 proposal, (incl. WP proposals) WP Coordinators have been established to initialize discussion within the community and organization of the first WPs.
 - Established contact to the active groups
 - Familiar with DRD1, WG, WP discussions
 - All technologies in a given WP covered

WP Coordinators

- For the finalization of the DRD1 proposal, (incl. WP proposals) WP Coordinators have been established to initialize discussion within the community and organization of the first WPs
- The list is not fixed, can be updated at any time. (Self-)nominations welcome
- WP Coordinators should be involved in WP activities, eventually

WP1

(Trackers)

- Atsuhiko Ochi
- Gabriella Pugliese
- Giulio Aielli
- Mauro Iodice
- Riccardo Farinelli

WP2

(Drift chambers)

Francesco Grancagnolo

WP3 (Straw tubes)

• Peter Wintz

WP4

(Tracking TPCs)

- Diego Gonzalez Diaz
- Esther Ferrer Ribas
- Francisco Ignacio Garcia Fuentes
- Jochen Kaminski
- Piotr Gasik

WP5

(Calorimeters)

• Imad Laktineh

WP6

(Photodetectors)

- Fulvio Tessarotto
- Florian Brunbauer
- Piotr Gasik

WP7

(Timing)

- Diego Gonzalez Diaz
- Florian Brunbauer
- Imad Laktineh
- Ingo Deppner

WP8

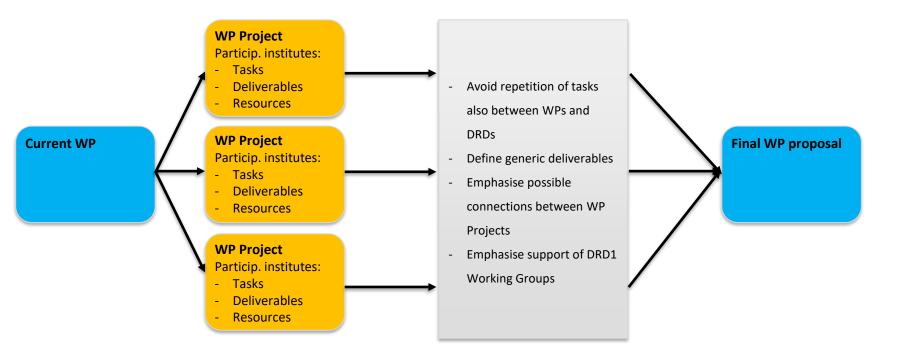
(Reaction/Decay TPCs)

- Diego Gonzalez Diaz
- Esther Ferrer Ribas
- Francisco Ignacio Garcia Fuentes
- Jochen Kaminski
- Piotr Gasik

(WP9) (Beyond HEP)

- We need to finalize the WP tables incl. more detailed information, on tasks, deliverables and contributed resources;
- What we have now in the proposal (e.g. tasks) is a draft, we (community) are free to further modify

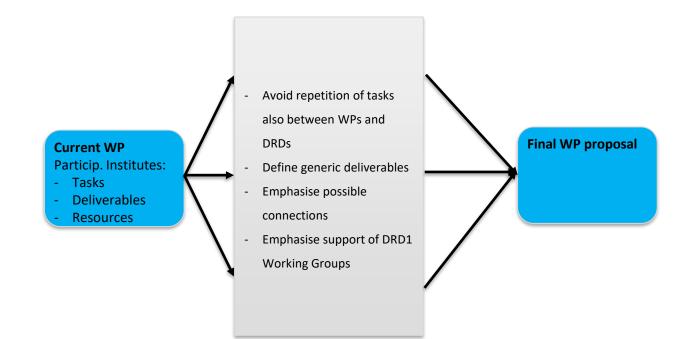
• It is not fully clear what DRDC will expect from us. Need to be prepared and flexible.


• Assumption: we stick to the current WPs (maybe with addition of WP9) for the DRD1 proposal

• Timescale: the deadline for the proposal submission is end of July

Towards the final DRD1 proposal

- How to continue? Different approaches possible. How should we detail our WP proposals?
- Approach 1: define "WP Projects" clustering institutes around well defind project, application, techonology development, etc. All WP Projects are part of one, final (in terms of proposal) WP.



34

Towards the final DRD1 proposal

- How to continue? Different approaches possible. How should we detail our WP proposals?
- Approach 2: define "generic R&D" work packages.

CERN

CERN

- How to continue? Different approaches possible. How should we detail our WP proposals?
- Approach 3: ideas welcome

- A threshold to join a WP
 - DRD1 membership
 - Well-defined task to which an institute will contribute and be responsible for
 - Committed resources (existing or requested)

• But

37

- You don't need to decide now. You can join a WP at any time
- This is DRD1 proposal submission. The WP will be reviewed and "approved" by DRD1 after collaboration is created. We may ammend WP tables in between

• Think collaborative! WP is a tool to get funding, but also strengthen our community, increase success of strategic R&D developments

- E.g. having several institutions contributiong to a task increases probability that the goals will be reached.
 - In case some resource contributions to a WP are not certain (e.g. include only requested resources which still need to be granted)
 - Smaller groups may gain a lot being a part of the WP and their contribution may increaase with time
- There will be tasks and contributions of different institutes which strongly depend on each other and on committed resources and are crucial for the success of a WP

39

- Whatever our approach is, we need to detail the WP tables with additional information
- As we do not know what kind of Final WP tables DRDC expects from us, we shall be prepared
- "Extended WP tables" will be created together with institutes which declare their contribution to specific WPs
 - The institutes intrtested to contribute to a given WP need to provide FTE and non-FTE resources in the extended WP tables
 - We differentiate between "existing" and "requested" resources.
 - WP can help in acquiring strategic funding, however, it is not mandatory for an institute to apply for extra funding. One can contribute with the exiting resources only
- See: extended WP table template

Extended WP template

A. Aaaa, B. Bbbbb, C. Ccccc, ...

On behalf of the groups described in the annex

Work package project title:

April the 1st 2023

DESCRIPTION OF THE PROJECT (AND POSITIONING W.R.T. THE ROADMAP)

••••

Tasks and deliverables:

T1: Resistive material

D1.1: material test D1.2: production prototype D1.3; *industrialisation*

...

T2: D1.1:

LIST OF PARTICIPATING INSTITUTES/LABS WITH A SHORT DESCRIPTION

INSTITUTE 1

The contact person of Institute 1 is

Institute 1 has xxx members. It has an extensive track record in

Main R&D interests...

INSTITUTE 2

....

APPENDIX: PARTICIPATING INSTITUTES AND THEIR RESOURCES

In the following we ask for sufficient information about the project. This information will be used in the final proposal of the DRD1. However, most of the information (i.e. everything below "Confidential Information") will be kept confidential. This information will only be known to the WP coordinator, the proposal team and to a small set of reviewers that will be determined by the future DRDC. This table should cover the period 2024-2026. To cover the period beyond we may provide an updated template. Until then you can use a free format for the years ≥ 2027.

Project name input to WPx on		
Task(s)		
Deliverable(s)		
Description of Technology		
Targeted DRDT	1.2	
Supporting DRD1 WGs		
Performance goals		
Planned dates	2026: 2030: 	

WP (Project) summary

Extended WP template

A. Aaaa, B. Bbbbb, C. Ccccc, ...

On behalf of the groups described in the annex

Work package project title:

April the 1st 2023

DESCRIPTION OF THE PROJECT (AND POSITIONING W.R.T. THE ROADMAP)

••••

Tasks and deliverables:

T1: Resistive material

D1.1: material test D1.2: production prototype D1.3; *industrialisation*

•••

T2: D1.1:

LIST OF PARTICIPATING INSTITUTES/LABS WITH A SHORT

DESCRIPTION

INSTITUTE 1

The contact person of Institute 1 is

Institute 1 has xxx members. It has an extensive track record in

Main R&D interests...

INSTITUTE 2

••••

APPENDIX: PARTICIPATING INSTITUTES AND THEIR RESOURCES

In the following we ask for sufficient information about the project. This information will be used in the final proposal of the DRD1. However, most of the information (i.e. everything below "Confidential Information") will be kept confidential. This information will only be known to the WP coordinator, the proposal team and to a small set of reviewers that will be determined by the future DRDC. This table should cover the period 2024-2026. To cover the period beyond we may provide an updated template. Until then you can use a free format for the years \geq 2027.

Project name input to WPx on		
Task(s)		
Deliverable(s)		
Description of Technology		
Targeted DRDT	1.2	
Supporting DRD1 WGs		
Performance goals		
Planned dates	2026: 2030: 	

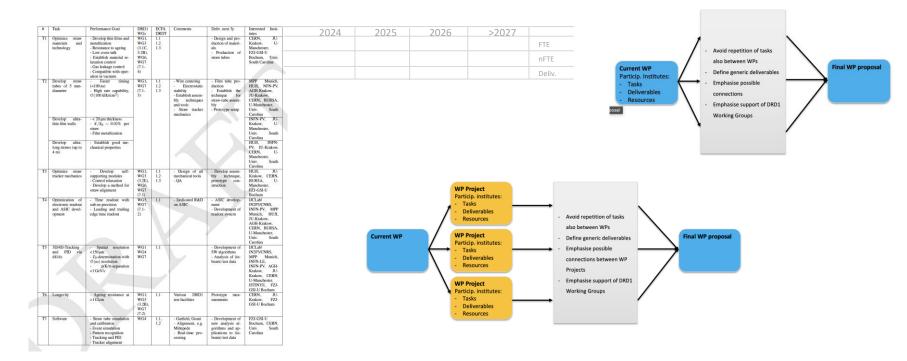
Resources - Confidential Information				
Existing R&D Framework and/or list of contributors	E.g. Institute 1, Institute 2,			
Description of contribution to technological task/deliverable	Institute 1: - T1: IBF studies - Perform simulation - 10x10 cm2 prototype measurements - T2: Low-noise FEE - Characterisation with 10x10 cm2 prototype Institute 2: 			
FTE Contributions already covered or expected to continue (Phys., Eng./Dev. and Techn.).	Institute 1: Institute 2: 			
Proposed new FTE request (Phys., Eng./Dev. and Techn.)	Institute 1: Institute 2: 			
"Materials" and facilities (in terms of funding and/or existence) already covered or expected to continue	Institute 1: Institute 2: 			
Proposed "materials" (non-FTE) funding to be requested	Institute 1: Institute 2: 			

	Resources - Confidential Information			
	Existing R&D Framework and/or list of contributors	E.g. Institute 1, Institute 2,		
Here we can be more detailed	Description of contribution to technological task/deliverable	Institute 1: - T1: IBF studies - Perform simulation - 10x10 cm2 prototype measurements - T2: Low-noise FEE - Characterisation with 10x10 cm2		
		prototype		
		Institute 2:		
	FTE Contributions already covered or expected to continue (Phys., Eng./Dev. and Techn.).	Institute 1: Institute 2:		
Resources needed to accomplish the				
goals/deliverables	Proposed new FTE request (Phys.,	Institute 1:		
FTE available per year for 2024-	Eng./Dev. and Techn.)	Institute 2:		
2027(9) and later				
Non-FTE available per year for 2024-	"Materials" and facilities (in terms of	Institute 1:		
2027(9) and later	funding and/or existence) already covered or expected to continue	Institute 2:		
FTE and non-FTE requested per year				
for 2024-2027(9) and later	Proposed "materials" (non-FTE)	Institute 1:		
	funding to be requested	Institute 2:		
Ĺ		3		

Confidential information available to:

- WP (Project) members
- Cooridnators
- DRD1 Management
- DRDC

This will not be a part of any public documents, proposals, etc.

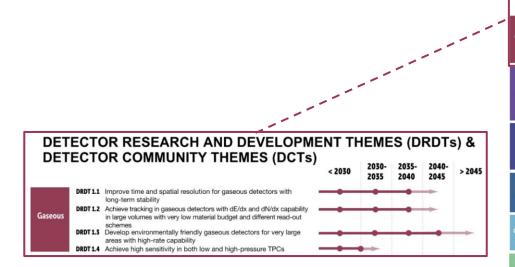

- Today and in the following days we should choose our approaches which may differ for different WPs, different cases
- WP Coordinators will contact ALL institutes which shared their interest in given WP topics in the survey and/or community feedback
 - Ongoing process you can add/remove your names at any time
 - We will contact the "contact persons" from your institutes. The list is based on the survey, and institute's feedback we received so far
- Contacts by mail + dedicated meetings;
- During the afternoon session, we will discuss whether some particular approach can be associated with given WPs.
- But it may also be, that we will decide (together) at a later stage. Maybe an additional WP survey is needed within the interested institutes
- Template will be circulated (pre-filled with WP Project proposals or naked)

Summary tables for the DRD1 proposal

• Depending on our approach (WP Projects, Generic WP tables) we can creat any kind of tables

CERN

• Depending on DRDC, with available input, we can create any kind of tables



DRD Themes

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

2030. 2035. 2040.

			< 2030	2030- 2035	2035-2040	2040- 2045	> 2045
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with		-	-	-	
Gaseous	DRDT 1.2	long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out		-	-	+	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate capability		-	-	-	
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs					
	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors		•			
Liquid	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds		•			
Liquid		Improve the material properties of target and detector components in liquid detectors		•			
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems		•			
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic		•	•	-	-
Solid	DRDT 3.2	CMOS pixel sensors Develop solid state sensors with 4D-capabilities for tracking and calorimetry				-	
state		Extend capabilities of solid state sensors to operate at extreme fluences	-	-		•	-
		Develop full 3D-interconnection technologies for solid state devices in particle physics					
PID and		Enhance the timing resolution and spectral range of photon detectors Develop photosensors for extreme environments					
Photon		Develop RICH and imaging detectors with low mass and high					
		Develop Hich and Imaging detectors with low mass and high resolution timing Develop compact high performance time-of-flight detectors	_		-	-	
		Promote the development of advanced quantum sensing technologies		-0-	-	-	
Quantum		Investigate and adapt state-of-the-art developments in quantum technologies to particle physics			•		
		Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies Develop and provide advanced enabling capabilities and infrastructure			-		
DRDT 6		Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution		-			
	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods		•	-		
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments				-	-
DRDT 7	DRDT 7.1	Advance technologies to deal with greatly increased data density			-	-	-
	DRDT 7.2	Develop technologies for increased intelligence on the detector			-	-	
Electronics	DRDT 7.3	Develop technologies in support of 4D- and 5D-techniques		-	-	-	
		Develop novel technologies to cope with extreme environments and required longevity	-	1.7		•	
		Evaluate and adapt to emerging electronics and data processing technologies					-
DRI		Develop novel magnet systems					
		Develop improved technologies and systems for cooling		1			
	DRDT 8.3	Adapt novel materials to achieve utralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.		-			
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects			-	-	
Training	DCT1	Establish and maintain a European coordinated programme for training in instrumentation					-
	DCT 2	Develop a master's degree programme in instrumentation					-

• GSR 1 - Supporting R&D facilities

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: **test beams, large scale generic prototyping and irradiation** be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to **ever more integrated detector concepts**, requiring holistic design approaches and large component counts, the R&D should **be supported with adequate mechanical and electronics engineering resources**, to bring in expertise in stateof-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of **state-of-the-art R&D-specific software packages must be maintained and continuously updated**. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

CERN

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also **long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs** in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to **make concerted investments**.

• GSR 7 – "Blue-sky" R&D

It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. **"Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit.** Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

General Strategic Recommendations

• GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and **R&D experts are essential for innovation**. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the **study of recognition** with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

• GSR 9 - Industrial partnerships

It is recommended to **identify promising areas for close collaboration between academic and industrial partners**, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to **establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry**, in particular for developments in solid state sensors and micro-electronics.

• GSR 10 – Open Science

It is recommended that **the concept of Open Science be explicitly supported in the context of instrumentation**, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP³) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.