DRD1 Community Meeting WG3: Gas and Material Studies

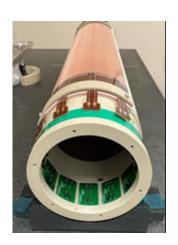
B. Mandelli (CERN) - Gas

G. Morello (INFN Frascati) - MPGD

K. Dehmelt (Stony Brook University) - MPGD

D. Piccolo (INFN Frascati) - RPC, MRPC

A. Pastore (INFN Bari) - RPC, MRPC


S. Roth (RWTH Aachen University) - TPC

F. Renga (INFN Roma) - Large Drift Chambers

B. Alvarez Gonzalez (University of Oviedo - ICTEA) - Large Drift Chambers

At the core of gaseous detector technologies

address common key issues related to gas and materials in the development of future gaseous detectors

At the core of gaseous detector technologies

Common research areas:

Gas

Systems for gaseous detectors

Materials

Long-term operations

At the core of gaseous detector technologies

Main common research topics:

Gas

- Gas properties
- Eco-gas studies
- Light emission in gases for optical Read-Out

•

Systems for gaseous detectors

- Gas systems
- Gas recirculation and recuperation systems
- Sealed detectors and systems

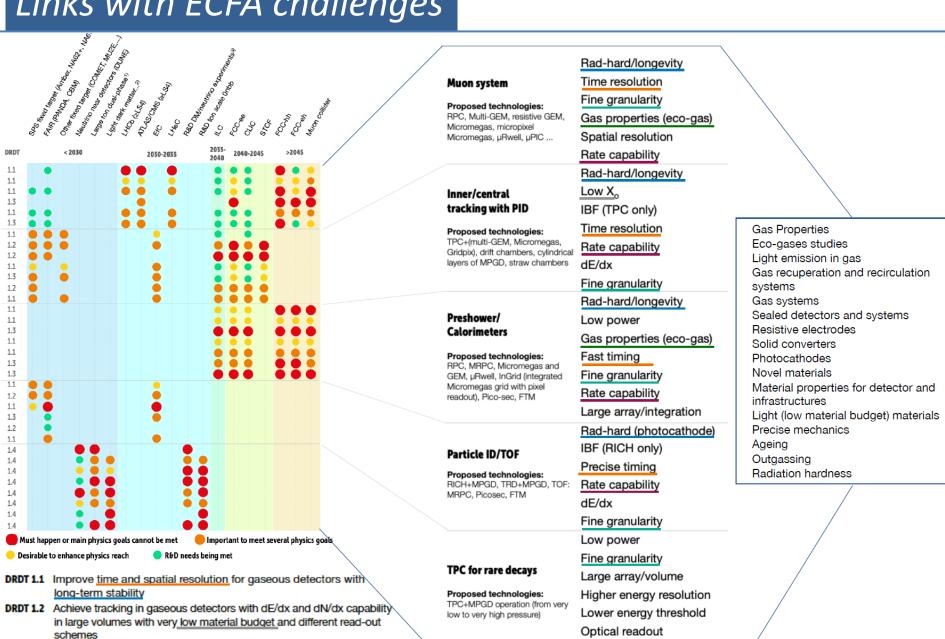
•

Materials

- Resistive electrodes
- Solid converters
- Photocathodes
- Novel materials
- Material properties
- Light materials

•

Long-term operations


- Current and gasinduced ageing effects
- Radiation hardness
- Outgassing

Links with ECFA challenges

DRDT 1.3 Develop environmentally friendly gaseous detectors for very large

DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

areas with high-rate capability

Gas pressure stability

Radiopurity

04 Mar 2022

Interconnections with DRD1 Working Packages

Materials \rightarrow Resistive electrodes Long term operation \rightarrow Rad. Hard.

#	Task	Performance Goal	DRD1	ECFA	Comments	Deliv. next 3 y
			WGs	DRDT		
T1	New resistive RPC ma- terials and production techniques for resistive layers	- Develop low-cost resistive layers - Increase rate capabil- ity	WG3 (3.1C, 3.2D), WG6, WG7 (7.1- 5)	1.1, 1.2	- HPL, low resistivity glass - Semiconductors - Printed resistive patterns - DLC-sputtered electrodes for surface-dissipation in RPCs	- Design, con- struction and test of prototypes with new produc- tion techniques
T2	New resistive MPGD structures	- Stable up to gains of $\mathcal{O}(10^6)$ - High gain in a single multiplication stage - High rate capability (1 MHz/cm ² and beyond) - High tracking performance	WG3 (3.1C, 3.2D), WG4, WG6, WG7 (7.1- 5)	1.2	- High-rate DLC layout for micro-RWELL	- Design, construction and test of prototypes with new resistive materials - Modelling and Simulation (signal induction) - MPGD prototypes based on resistive elements for tracking
	2D readout optimization	- Development of low- granularity 2D-readout with high tracking per- formance			- Layouts based on low resistivity DLC film and charge sharing	- Design, con- struction and test of prototypes with low-granularity 2D-readout

Gas \rightarrow Gas properties, Eco-gas studies, sealed detectors .. Systems \rightarrow Gas recirculation and recuperation systems, ...

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3 y	_
T5	Eco-friendly gases	- Guarantee long-term operation - Explore compatibility and optimized operation with low-GWP gases	WG3 (3.1A, 3.1B, 3.2C), WG4, WG7 (7.1- 4)	1.1	- Ageing studies - Leak mitigation and maintenance of existing systems - Gas simulation: drift velocity, diffusion	- Test and char- acterization of gaseous-detection technologies with low-GWP gases (broadly)	
Т6	Manufacturing	- Construction of large- area detectors at low cost - Modular design - Technology transfer strategy and training center for production	WG3 (3.2E), WG6, WG8	1.3	Optimization of the manufacturing pro- cedure to minimize time-consuming or costly steps	- Design and manufacturing of large-area detector - Large-area DLC production - CERN: MPGD based manufacturing capabilities and large-area modules (design and prototyping). Note: MPT Workshop	
Т7	Thinner layers and in- creased mechanical pre- cision over large areas	- Test to experience the ultimate limits to thin- ning down the detector	WG3 (3.2E), WG5, WG7 (7.1,2)	1.3			-
Т8	Longevity on large de- tector areas	Study discharge rate and the impact of irra- diation and transported charge (up to C/cm ²)	WG1, WG3 (3.1B, 3.1D, 3.2B), WG4, WG7 (7.1,3)	1.1	- Discharge probability - Ageing		

Table 1: WP1 (Part I) - a work package on genuine trackers/hodoscopes

Large area Muon systems, inner tracking/vertexing - all technologies

...and others DRD1 Working Groups

Т3	Mechanics: de- velop new wiring procedures and new end-plate concepts	- Feedthrough- less wiring - More transpar- ent end-plates (X < 5%X ₀)	WG3 (3.1C)	1.1, 1.3	- Separate the wire sup- port function from the gas containment func- tion	- Conceptual designs of novel wiring procedures - Full design of innova- tive end-plate concepts
T4	Increase rate ca- pability and gran- ularity	- Smaller cell size and drift time - Higher field-to- sense wire ratio	WG3 (3.2E), WG7 (7.2)	1.3	Higher field-to-sense wire ratio allows in- creasing the number of field wires, decreasing the wire contribution to multiple scattering	Performance evalua- tion on drift-cell proto- types at different granu- larities and with differ- ent field configurations
Т5	Consolidate new wire materials and wire metal coating	- Electrostatic sta- bility - High YTS - Low mass, low Z - High conductiv- ity - Low ageing	WG3 (3.1C)	1.1, 1.2	Establish contacts with companies producing new wires Develop metal coating of carbon wires	Construction of a magnetron sputtering facility for metal coating of carbon wires
Т6	Study ageing phe- nomena for new wire types	- Establish charge-collection limits for carbon wires as field and sense wires	WG3 (3.2B), WG7 (7.3,4)	1.1, 1.2	- Build prototypes with new wires as field and sense wires	Prototype tests in- beam and at irradiation facilities Measurement of per- formance and depen- dence on total inte- grated charge
Т7	Optimize gas mixing, recupera- tion, purification and recirculation systems	Use non-flammable gases Keep high quenching power Keep low-Z. Increase radiation length Operate at high ionization density	WG3 (3.1B, 3.2C), WG4, WG7 (7.4)	1.3	- ATEX and safety requirements - Attention to the cost of gas - Hydrocarbon-free mixtures	Study the performance of hydrocarbon-free gas mixtures Implement a complete design of a recirculating system

Gas \rightarrow eco-gas studies Materials \rightarrow Resistive electrodes, solid converters Systems \rightarrow Gas recirculation and recuperation systems, ... Long term operation \rightarrow ageing effects

Straw chambers

Table 4: WP3 (Part I) - a work package on inner and central tracking with PID

#	Task	Performance Goal	DRD1	ECFA	Comments	Deliv. next 3y
			WGs	DRDT		,
T1	Optimize straw materials and technology	- Develop thin films and metallization - Resistance to ageing - Low cross-talk - Establish material relaxation control - Gas leakage control - Compatible with oper-	WG1, WG3 (3.1C, 3.2B), WG6, WG7 (7.1- 4)	1.1 1.2 1.3		- Design and pro- duction of materi- als - Production of straw tubes
		ation in vacuum	-1/			
<u> </u>		ation in vacuum				
T3	Optimize straw	 Develop self- 	WG1,	1.1	- Design of all	- Develop assem-
	tracker mechanics	supporting modules	WG3	1.2	mechanical tools	bly technique
		- Control relaxation	(3.2E),	1.3	- QA	- Prototype con-
		- Develop a method for	WG6,	\		struction
		straw alignment	WG7	1		Saucton
		straw angimient	(7.1)			
			(7.1)			

Table 5: WP3 (Part II) - a work package on inner and central tracking with PID

1	6 Longevity	- Ageing resistance >	WG1,	1.1	Test at various	Prototype	mea-
		1 C/cm for thin-wall	WG3		DRD1 test facili-	surements	
		straws	(3.2B),		ties		
		- Ageing resistance >	WG7				
		10 C/cm for straws and	(7.2)				
		highest particle rates					

Table 7: WP4 (Part II) - a work package on inner and central tracking with PID TPCs

	. —					
T6	Gas mixture	Optimize: - Longevity - Ageing - Discharge probability - Drift velocity - Ion mobility	WG1, WG3 (3.1D, 3.2A, 3.2B), WG4, WG7 (7.1- 3,5)	1.1	- Discharge probability, ageing, gas properties - Optimization of the HV working point - Optimization wrt. the expected resolution (aim for <100 µm) - Cluster ions	- Lower the discharge probability of readout units by 1-2 orders of magnitude down to ~10 ⁻¹⁴ per hadron - Avoid secondary discharges in MPGD stacks

Table 3: <u>WP2</u> - a work package on inner and central tracking with PID *Drift chambers*

...and others DRD1 Working Groups

Table 8: WP5 - a work package on calorimetry.

T2 Gas Studies	- Gas mixture operation with low environ- mental impact (low-GWP)	WG3 (3.1B, 3.2C), WG4, WG7 (7.1-4)	1.1,1.3	Improvement of recu- peration and recircula- tion systems Longevity studies Ecological gas mix- tures without F-gases	Performance stability results with lower % of fresh gas Identification of an ecogas mixture with performance comparable to the standard one
T3 Mechanics mization	opti Uniform re- sponse over large surface ≈1-2 m ²	WG3 (3.2E), WG7 (7.1-2)	1.1	- Optimization of detector structures to minimize dead area - Development of large-scale MPGD construction techniques - Production of high planarity, large-area PCBs for MPGDs - Mechanical fabrication of very thin High-Pressure Laminate and glass RPCs - Uniform resistivity - Uniform gas gain	Construction of a first full- scale prototype and perfor- mance assessment Establish QC and QA proce- dures for mass production

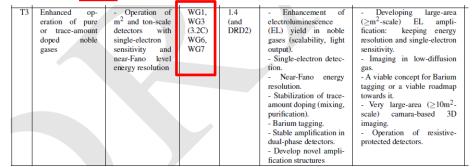
Several technologies, f.e. RPC, GEM, µRWELL, PICOSEC, ..

Table 9: WP6 - a work package on gaseous photon detectors.

#	Task	Performance	DRD1	ECFA	Comments	Deliv. next 3y
		Goal	WGs	DRDT		
T1	Increase photo- cathode efficiency and develop ro- bust photocon- verters	Improve: - Longevity - QE - Extend to the visible range - Rad-hardness up to 10 ¹¹ n _{eq} /cm ²	WG3 (3.1C), WG6, WG7 (7.1-4)	1.1	- Study hydrogenated nanodiamonds - Study diamond-like carbon (DLC)	Demonstrate the performance of nanodiamond-powder photocathodes in terms of their chemical reactivity and ageing Provide a detailed characterization of QE of new photocathode materials, e.g. DLC
Т3	Gas studies	- Develop eco- friendly gas radiators and, in particular, ex- plore alternatives to CF ₄	WG3 (3.2A), WG4, WG7 (7.2,4)	1.1, 1.3	Identification of eco- friendly gas mixtures free from greenhouse gases Alternatives to CF ₄ for optical readout	

Several technologies, f.e. Multi-MicroMegas, M-THGEM, GEM, ..

Gas \rightarrow eco-gas studies Materials \rightarrow Resistive electrodes, solid converters Systems \rightarrow Gas recirculation and recuperation systems, ... Long term operation \rightarrow rad. hard., ageing effects


Table 10: WP7 - a work package on gaseous timing detectors.

T2	Enhance timing	- Time resolution < 20 ps up to 30 kHz/cm ²	WG3 (3.2A, 3.2D), WG4, WG7 (7.2)	1.1	MPGD:PICOSEC	- Present large area MPGD timing detector capabilities in beam
Т3	Enhance rate ca- pability	- Time resolution < 50 ps up to 100- 150 kHz/cm ²	WG3, WG4, WG7 (7.2)	1.3	RPC: - Gap thickness - Number of gaps - Thin, low-R glass - Single cell layout - GaAs timing RPC - Resistive Cylindrical Chamber RCC PICOSEC: use at high rate	- Provide a pro- totype for >100 kHz/cm ² rate ca- pability
T4	Material studies	- Rad-hardness - Longevity	WG3, WG7 (7.3,4)	1.1-1.3	- Low-resistivity glass - Spacers - Photocathodes - Photoconverters - GaAs - HPL or phenolic glass	
T7	Gas studies	- Eco-friendly mixtures - Recuperation - Ageing - CO ₂ based mixture with geometrical quenching	WG3 (3.2A, 3.2B, 3.2C), WG7 (7.2-4)	1.3	- Low-GWP solutions for saturated-avalanche operation	- Gas mixtures for MPGD(PICOSEC) based timing detectors (re- placement of Ne, CF ₄ , C ₂ H ₆)

Several technologies, f.e. RPC, tRPC, RCC, PICOSEC, ..

...and others DRD1 Working Groups

Table 11: WP8 (Part I) - a work package on TPCs

Gas → gas properties, eco-gas studies Materials → solid converters Systems → Gas systems

Table 12: WP8 (Part II) - a work package on TPCs

				l _i	on opinion conners	
T5	Determination of the interaction time (T_0)	- Achieve a viable timing signal while keeping low electron dif- fusion and high amplification of the ionization signal	WG3 (3.1A)	1.4 (and DRD2)	- T ₀ sensitivity for accelerator-based neutrino TPCs T ₀ sensitivity in the reconstruction of low-energy nuclear recoils, via scintillation light or minority carriers in case of negative-ion TPCs Explore the applicability of alternative methods (diffusion, positive ions) - T ₀ -determination on spherical counters.	- Demonstration of track reconstruction and T ₀ -tagging for minimum ionizing particles at ≈1MeV-threshold and high pressure.
T6	Modelling	- Develop a microscopic framework for computing scin- tillation and negative-ion yields, and trans- port	WG3 (3.1A, 3.2A), WG4	1.3,1.4	Modelling primary scintillation. Modelling secondary scintillation. Modelling ion transport and avalanche for electronegative mix- tures. Modelling space charge.	Develop a framework for optical simulation that is integrated as part of the standard commu- nity tools, or develop a concrete implementa- tion path towards it.
177	Gas mixtures and gas handling	Study new gas mixtures, oper- ated in conditions of high purity	WG3 (3.1B, 3.2C), WG6, WG7	1.3, 1.4	New gas mixtures for optical readout. New gas mixtures for negative-ion readout. Recirculation and recuperation systems. Purification of low-quenched mixtures.	Develop alternatives to CF ₄ -based mixtures operated in open loop, or a viable path towards it.
Т8	Radiopurity	- Improve manu- facturing process and purifica- tion as well as material-selection standards	WG3		Radon emanation studies Mitigation of gaseous radioactive isotopes Material selection Develop radiopure amplification structures and radiopure optical cameras.	- Develop MPGDs and manufacturing techniques with high radiopurity.

Outcomes: a few examples

Reference	Description	Deliverable Nature
D3.3.1	Gas properties: drift velocity, diffusion	Common gas properties
	for e- and ions, gain measurements,	database
	light emission, attachment, etc.	
D3.3.2	Characterisation of new eco-friendly	New data for the in-
	gases: gas properties, cross-section,	tegration in Magboltz
	etc.	and Garfield++ (collab-
		oration with WG4)
D3.3.3	Development of gas recirculation and	New design and knowl-
	recuperation systems	edge transfer
D3.3.4	Longevity and ageing studies for differ-	Report for a common
	ent technologies	approach
D3.3.5	Resistive material: characterisation of	Common resistive mate-
	different materials	rial database and proce-
		dures
D3.3.6	Characterisation of material for the	Common construction
	construction of detectors: material	material database
	properties, compatibility, outgassing,	
	etc.	
D3.3.7	Mechanics: compression, rigidity, ma-	Common approach for
	chining precision, etc.	the different technolo-
		gies

Table 13: WG3 - Common Objectives

Summary

The DRD1 WG3 aims to address key issues, related to gas and material studies, common to all gaseous detector technologies under development for future applications

The WG3 main research topics are well linked with the ECFA themes and strongly connected to all the tasks currently foreseen for the DRD1 Working Packages

Shared resources, facilities and expertise will be key ingredients to achieve the WG3 common objectives which will also take advantage of synergies with other DRD1 WGs