Drift Chambers Challenges and Work Packages

F. Grancagnolo INFN – Lecce

DRD1 Community Meeting CERN, 22–23 June 2023

Why a Drift Chamber?

Trackers at e⁺e⁻ Colliders

past						present			
SPEAR	MARK2	Drift Chamber	PEP	MARK2	Drift Chamber	VEPP2000	CMD-3	Drift Chamber	
	MARK3	Drift Chamber		PEP-4	TPC		KEDR	Drift Chamber	
DORIS	PLUTO	MWPC		MAC	Drift Chamber	BEPC2	BES3	Drift Chamber	
	ARGUS	Drift Chamber		HRS	Drift Chamber	S KEKB	Belle2	Drift Chamber	
CESR	CLEO1,2,3	Drift Chamber		DELCO	MWPC				
	CMD-2	Drift Chamber	BEPC	BEPC BES1.2 Drift Chamber			future		
VEPP2/4M	KEDR	Drift Chamber	LEP		TPC	ILC	ILD	TPC	
	NSD	Drift Chamber			TPC		SiD	Si	
	CELLO	MWPC + Drift Ch.		DELFHI		CLIC	CLIC	Si	
	JADE	Drift Chamber			SI + TEC	FCC-ee	CLD	Si	
PETRA	PLUTO	MWPC		OPAL	Drift Chamber		IDEA	Drift Chamber	
	MARK-J	TEC + Drift Ch.	SLC	MARK2	Drift Chamber	CEPC	Baseline	TPC Si	
	TASSO	MWPC + Drift Ch.		SLD	Drift Chamber		4 th	Si + Drift Chamber	
	ΔΜΥ	Drift Chamber	DAPHNE	KLOE	Drift Chamber		IDEA	Drift Chamber	
TRISTAN	VENUS	Drift Chamber	PEP2	BaBar	Drift Chamber	SCTF	BINP	Drift Chamber	
	TOPAZ	TPC	KEKB	Belle	Drift Chamber	STCF	HIEPA	Drift Chamber	
6/22/23 DRD1 Community Meeting 2									

Wire constraints

Electrostatic stability condition

$T_c \ge \frac{C^2 V_0^2}{4\pi \epsilon w^2} L^2$	
---	--

T_c wire tension*w* cell width*L* wire length

C capacitance

per unit length

V_o voltage

anode-cathode

For w = 1 cm, L = 4 m:

T_c > **26 g** for 40 μm Al field wires (δ_{grav} = 260 μm) **T**_c > **21 g** for 20 μm W sense wires (δ_{grav} = 580 μm)

Elastic limit condition

 $T_c < YTS \times \pi r_w^2$

YTS = 750 Mpa for W, 290 Mpa for Al

 $T_c < 36 \text{ g}$ for 40 μm Al field wires ($\delta_{grav} = 190 \mu$ m) $T_c < 24 \text{ g}$ for 20 μm W sense wires ($\delta_{grav} = 510 \mu$ m)

The drift chamber length (L = 4 m) imposes strong constraints on the drift cell size (w = 1 cm)Very little margin left \Rightarrow increase wires radii or cell size \Rightarrow use different types of wires

Drift Chamber material budget

Increase cell size to w > 1.5 cm(+10%) $(56,448 \rightarrow 45,700 \text{ cells}, 112 \rightarrow 100 \text{ layers},$ and replace 20 µm W and 40-50 µm Al (5:1) with 35 µm C wires (10:1) 340,000 \rightarrow 500,000 wires, 9 \rightarrow 18 Ton) Stability condition: $30 g < T_c < 87 g$ corresponding to $270 (158) \mu m > \delta_{grav} > 93 (54) \mu m$ (safety factor within ample margin!) Contribution to m. scatt. from wires: $1.3 \times 10^{-3} X_0 \rightarrow 0.9 \times 10^{-3} X_0$

current Material budget estimates

Inner wall (from CMD3 drift chamber)	8.4×10 ⁻⁴ X ₀
200 µm Carbon fiber	
 Gas (from KLOE drift chamber) 	1.3×10 ⁻³ X ₀
90% He – 10% iC ₄ H ₁₀	
 Wires (from MEG2 drift chamber) 	1.3×10 ⁻³ X ₀
20 μ m W sense wires 6.8×10 ⁻⁴ X ₀	
40 μ m Al field wires 4.3×10 ⁻⁴ X ₀	
50 μ m Al guard wires 1.6×10 ⁻⁴ X ₀	
Outer wall (from Mu2e I-tracker studies)	1.2×10 ⁻² X ₀
2 cm composite sandwich (7.7 Tons)	
End-plates (from Mu2e I-tracker studies)	4.5×10 ⁻² X ₀
wire cage + gas envelope	
incl. services (electronics, cables,)	

1st CHALLENGES: wire types – Carbon monofilament

Metal coating by HiPIMS: High-power impulse magnetron sputtering

physical vapor deposition (PVD) of thin films based on magnetron sputter deposition (extremely high

6/22/23

1st CHALLENGES: wire types – Carbon monofilament

Gabriel CHARLES 6/22/23

05/30/2023 ECFA WG3: Topical workshop on tracking and vertexing DRD1 Community Meeting 1

2nd CHALLENGE: 350,000 wires!

Evolution of the MEG2 drift chamber wiring

Wiring robot at INFN Lecce: 32 wires at once

MEG2: 12 wires/cm² IDEA: 4 wires/cm²

Very different dimensions! + tension recovery scheme

2nd CHALLENGE: mechanics and materials

3rd CHALLENGE: Cluster counting/timing

PID with dN_{cl}/dx in the time domain: requirements

0.02

0.02

0.01

0.01

5

Determine, in the signal, the ordered sequence of the electron arrival times:

$$\left\{t_{j}^{el}\right\} \qquad j=1, n_{el}$$

Based on the dependence of the average time separation between consecutive clusters and on the time spread due to **diffusion**, as a function of the drift time, define the probability function, that the *j*th electron belongs to the *i*th cluster:

$$P(j,i)$$
 $j = 1, n_{el}, i = 1, n_{cl}$

 $i = 1, n_{cl}$

and the total number of clusters

6/22/23

time [s]

PID with dN_{cl}/dx in the time domain: simulations

3rd CHALLENGE: simulation – experimental tests

GEANT4 with **HEED** clusterization model

F. Cuna, N. De Filippis, F. Grancagnolo, G. Tassielli, Simulation of particle identification with the cluster counting technique, arXiv:2105.07064v1 [physics.ins-det] 14 May 2021

Higher values of Fermi plateau for dN_{cl}/dx w.r.t. dE/dx, vet reached at lower $\beta \gamma$ values and with a steeper slope

due to a choice of E_{cut} (the maximum energy of an electron still associated to a track in the simulation) parameter?

Л

Experimental beam

test campaign

needed

Next beam test 21 June – 4 July at CERN-T10 with muons 2-12 GeV/c

4th CHALLENGE: peak finding algorithms

5th CHALLENGE: data reduction

The excellent performance of the **cluster finding** algorithms in offline analysis, relies on the assumption of being able to transfer the full spectrum of the digitized drift signals. However ...

according to the IDEA drift chamber operating conditions:

- 56448 drift cells in 112 layers (~130 hits/track)
- maximum drift time of 500 ns
- cluster density of 20 clusters/cm
- signal digitization 12 bits at 2 Gsa/s

... and to the FCC-ee running conditions at the Z-pole

- 100 KHz of Z decays with 20 charged tracks/event multiplicity
- 30 KHz of $\gamma\gamma \rightarrow$ hadrons with 10 charged tracks/event multiplicity
- 2.5% occupancy due to beam noise
- 2.5% occupancy due to hits with isolated peaks

Reading both ends of the wires, \Rightarrow data rate ≥ 1 TB/s !

Solution consists in transferring, for each hit drift cell, instead of the full signal spectrum, only the minimal information relevant to the application of the cluster timing/counting techniques, i.e.:

the amplitude and the arrival time of each peak associated with each individual ionisation electron.

This can be accomplished by using a **FPGA** for the **real time analysis** of the data generated by the drift chamber and successively digitized by an ADC.

Single channel solution has been successfully verified. G. Chiarello et al., The Use of FPGA in Drift Chambers for High Energy Physics Experiments May 31, 2017 DOI: <u>10.5772/66853</u>

With this procedure **data transfer rate is reduced to** ~ **25 GB/s** Extension to a 4-channel board is in progress. Ultimate goal is a multi-ch. board (128 or 256 channels) to **reduce cost** and complexity of the system and to gain flexibility in determining the **proximity correlations** between hit cells for track **segment finding** and for **triggering** purposes.

Implementing ML algorithms on FPGA for peak finding

30/05/23

F. Grancagnolo - ECFA WG3

Work Package list

#	Task	Performance	DRD1	ECFA	Comments	Deliv. next 3y	Interested
		Goal	WGs	DRDT			Institutes
T1	Development of Front-end ASICs for cluster count- ing	- High bandwidth - High gain - Low power - Low mass	WG5, WG7 (7.2)	1.1, 1.2	- Achieve efficient clus- ter counting and cluster timing performances	- Full design, construc- tion and test of the first prototype of the front- end ASIC for cluster counting	IHEP CAS, CNRS-LSBB, INFN-RM1, INFN-LE, INFN-PD, INFN-BA, INFN-TO, SBU, IPPLM
T2	Develop scalable multichannel DAQ board	 High sampling rate Dead-time-less DSP and filter- ing Event time stamping Track triggering 	WG5, WG7 (7.2)	1.1, 1.2	 FPGA-based architec- ture ML algorithms-based firmware 	- A working prototype of a scalable multichan- nel DAQ board	IHEP CAS, INFN-LE, INFN-BA, UW–Madison, IPPLM, INFN-BO
Τ3	Mechanics: de- velop new wiring procedures and new end-plate concepts	 Feedthrough- less wiring More transpar- ent end-plates (X < 5%X₀) 	WG3 (3.1C)	1.1, 1.3	- Separate the wire sup- port function from the gas containment func- tion	 Conceptual designs of novel wiring procedures Full design of innova- tive end-plate concepts 	USTC, GANIL, CNRS- IN2P3/IJCLab, CNRS-LSBB, GSI, MPP, INFN-RM1, INFN-LE, INFN-BA, INFN-PD, CERN, PSI, U Manchester, SBU, Wigner

6/22/23

14	Increase rate ca- pability and gran- ularity	 Smaller cell size and shorter drift time Higher field-to- sense wire ratio 	WG3 (3.2E), WG7 (7.2)	1.3	- Higher field-to-sense wire ratio allows in- creasing the number of field wires, decreasing the wire contribution to multiple scattering	- Performance evalua- tion on drift-cell proto- types at different granu- larities and with differ- ent field configurations	USTC, CNRS- IN2P3/IJCLab, CNRS-LSBB, MPP, Bose, INFN-RM1, INFN-LE, INFN-BA, CERN, PSI, U Bursa, U Manchester, SBU, INFN- BO
Τ5	Consolidate new wire materials and wire metal coating	 Electrostatic stability High YTS Low mass, low Z High conductivity Low ageing 	WG3 (3.1C)	1.1, 1.2	 Establish contacts with companies produc- ing new wires Develop metal coating of carbon wires 	- Construction of a mag- netron sputtering facil- ity for metal coating of carbon wires	GSI, CNRS- IN2P3/IJCLab, CNRS-LSBB, INFN-RM1, INFN-LE, INFN-BA, CERN, PSI, U Manchester, SBU, INFN- BO
T6	Study ageing phe- nomena for new wire types	- Establish charge-collection limits for carbon wires as field and sense wires	WG3 (3.2B), WG7 (7.3,4)	1.1, 1.2	- Build prototypes with new wires as field and sense wires	 Prototype tests in- beam and at irradiation facilities Measurement of per- formance and depen- dence on total inte- grated charge 	CNRS- IN2P3/IJCLab, INFN-RM1, INFN-LE, INFN-BA, INFN-BO
T7	Optimize gas mixing, recupera- tion, purification and recirculation systems	 Use non- flammable gases Keep high quenching power Keep low-Z Increase radia- tion length Operate at high ionization density 	WG3 (3.1B, 3.2C), WG4, WG7 (7.4)	1.3	 ATEX and safety requirements cost of gas Hydrocarbon-free mixtures 	 Study the performance of hydrocarbon-free gas mixtures Implement a complete design of a recirculating system 	MPP, INFN- RM1, INFN- LE, INFN-BA, PSI, U Bursa, SBU, IPPLM, U Aveiro, Wigner

6/22/23