WP4 - Inner and Central Tracking with PID (TPC) WP8 - TPC as Reaction and Decay Chamber (Rare Events, Neutrino Physics, nuclear physics)

E. Ferrer Ribas, F. Garcia Fuentes, P. Gasik, D. Gonzalez Diaz, J. Kaminski, F. Renga

WP4 – Inner and Central Tracking with PID (TPC)

Table 6

#	Task	Performance	DRD1	ECFA	Comments	Deliv. next 3y	Interested
		Goal	WGs	DRDT		5000	Institutes
TI	IBF reduction	- Gain×IBF ≈ 1- 2 - IBF optimiza- tion together with energy resolution and discharge sta- bility	WG4, WG7 (7.1- 2,5)	1.2	- Hybrid stacks - Gating GEM - Distortion corrections - Space-charge monitoring - Development of simulation tools - Operation in magnetic fields	- Provide a large-area pro- totype with a uniform IBF distribution of G*IBF=5 keeping the energy resolu- tion at a tolerable level - Present a structure with stable settings for G×IBF of 1-2 - Determine the ion block- ing power of a GEM-based gate - Provide systematic stud- ies and simulations of IBF performance for the most common structures in (high) magnetic fields - Introduce an IBF calcu- lator (Garfield-based) for optimization of the HV parameters	IFUSP, GSI, U Bonn, IRFU/CEA, USTC, KEK- IPNS, DESY, GANIL, RWTH Aachen, INFN-PD, IP- PLM, CERN, PSI, U Bursa, SBU, WIS, U Coimbra, U Aveiro, Wigner, SINP Kolkata
T2	Pixel-TPC development	- Produce 50000- 60000 GridPixes to read out a full TPC - Achieve dN/dx counting- resolution < 4%	WG5, WG7 (7.1- 2,5)	1.1	- InGrids (grouping of channels) - Low-power FEE - Optimization of pixel size (>200 µm) or cost reduction	- Provide a large-area pixel-based (InGrid) read-out module - Measuring IBF for Gridpix. Reduction with double-mesh - Present dN/dx measurements in beam - Small area prototypes of MPGD/TimePix hybridisation.	U Bonn, U Carleton, WIS, CERN
Т3	Optimization of the amplification stage and its mechanical structure, and development of low X/X_0 field cages (FC)	- Uniform re- sponse across a readout unit-area GAE/JAX ≈ 4% - Point resolution of <100 μm - Minimize static distortions by re- ducing insensitive areas - Minimize E×B - Achieve E-field homogeneity at ~10 ⁻³ level	WG1, WG4, WG6, WG7 (7.1- 2.5)	1.1	Minimization of static distortions: - Algorithms for distortion corrections - Field shaping wires - Minimize GEM frame area (use thicker GEMs) - Laser systems Main ampl. stages: - Encapsulated resistive-anode MMG - Multiple GEM - GridPix - Hybrids FC: - high-quality strips, suspended strips - module flatness	- Provide a solution for a large-volume TPC with $O(10^6)$ pad-readout by means of pre-production of several readout modules of comparable quality	IRFU/CEA. U Bonn, IHEP CAS, USTC, GANIL. CXRS- IN2P3/I/CLab, GSI, RWTH Aachen, INFN-RMI, INFN-PD INFN-BA, IPPLM, PSI, U Bursa, SBU, BNL. WIS, IFAE

Table 7

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
T4	Low-power FEE	- <5 mW/ch for >10 ⁶ pad TPC - ASIC de- velopment in 65 nm CMOS	WG5	1.3	- Continuous vs. pulsed	- Present stable opera- tion of a multi-channel TPC prototype with a low- power ASIC	IHEP CAS
T5	FEE cooling	- Operate 10 ⁶ channels per end-plate	WG5	1.2	- Two-phase CO ₂ cooling - Micro-channel cooling with 300 µm pipes in carbon fiber tubes - 3D printing: complex structures, performance optimization, material selection	- Present a prototype of a cooling system for the 10 ⁶ pad TPC option	IRFU/CEA, U Lund, INFN- PI, INFN-LE, INFN-PD
T6	Gas mixture	Optimize: - Longevity - Ageing - Discharge probability - Drift velocity - Ion mobility	WG1, WG3 (3.1D, 3.2A, 3.2B), WG4, WG7 (7.1- 3,5)	1.1	- Discharge probability, ageing, gas properties - Optimization of the HV working point - Optimization wrt. the expected resolution (aim for <100 µm) - Cluster ions	- Lower the discharge probability of readout units by 1-2 orders of magnitude down to ~10 ⁻¹⁴ per hadron - Avoid secondary discharges in MPGD stacks	CERN, IFUSP, GSI, TUM, IHEP CAS, GANIL, USTC, CNRS- INEPJ/CEA, CNRS-LSBB, RWTH Aachen, U Bonn, Bose, INFN-RMI, INFN-LE, INFN-PD, INFN-BA, IPPLM, USC/IGFAE, U Bursa, SBU, U Warwick, U Aveiro, U Bolu-Abant

Tasks

Tasks based on community survey in February/March:

Task 1: IBF reduction

Task 2: Pixel-TPC development

Task 3: Optimization of the amplification stage and its mechanical structure and development

of low X/X0 field cages

Task 4: Low power FEE

Task 5: FEE cooling

Task 6: Gas mixtures

Should we regroup the tasks?
Along the lines of final applications?

WP 8 – TPC as Reaction and Decay Chamber (Rare Events, Neutrino Physics, nuclear physics)

Task 1: Enhance operation of optical readout across gas densities

Task 2: Enhance operation of charge readout across gas densities

Task 3: Enhance operation of pure or trace-amount doped noble gases

Task 4: Ultra-low-energy reconstruction of highly ionizing tracks (including R&D on negative-ion-readout)

Task 5: Determination of the interaction time (T0)

Task 6: Modeling

Task 7: Gas mixtures and gas handling

Task 8: Radiopurity

Table 11

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
TI	Enhanced oper- ation of optical readout across gas densities	- Achieve an ionization-energy threshold of at least O(keV) in the range 10 mbar to 10 bar (and, in the case of noble gases, to saturated vapours and even to the liquid state) with a scalable concept Reconstruction of MeV-nuclei of variable stopping power, with mm and sub-mm sampling.	WG1, WG6, WG7	1.2, 1.4	- High optical gain across gas densities in pure CF ₄ and CF ₄ -based mixtures with keV-sensitivity Fine track sampling capabilities in the range of 10's of µm to few mm Adaptations in optics and camera readout to cover larger areas, at low granularity and with drift-time information (3D-readout) Simultaneous detection of low and high ionization particles.	- Low-pressure nuclear track reconstruction at ≈10 keV Low-pressure electron-track reconstruction with the simultaneous reconstruction of nuclear tracks at ≈100 keV MIP tracking at 10 bar in argon-based gas mixture Reconstruction of MeV-nuclei with mm and sub-mm sampling at varying pressure and gas conditions Stability of reconstruction of nuclear-reaction byproducts over a large range of primary ionizations.	CERN, GANIL, ANU, IRFU/CEA, USC/IGFAE, GSSI, INFN- RMI, INFN-PD, INFN-BA, INFN- LNF, U New Mexico, STFC- RAL, IFIC, U Liverpool, U Genève, U War- wick, U Coimbra, Fermilab, MSU, HUJI, U Bursa, U Bolu-Abant, WIS, DIPC, U Hamburg, IFAE, AUTH
T2	Enhanced operation of charge readout across gas densities	- Achieve an ionization-energy threshold of at least O(keV) in the range 10 mbar to 10 bar (and, in the case of noble gases, to saturated vapours and even to the liquid state) with a scalable concept Reconstruction of MeV-nuclei of variable stopping power, with mm and sub-mm sampling.	WG1, WG5, WG6, WG7	1.2, 1.4	- High avalanche gain across gas densities in CF4, H2, He, Ar, Xe -based TPCs with keV-sensitivity Fine track sampling capabilities in the range of 10's of µm to few mm High-density and low-power electronics, with the ability to self-trigger TimePix-based charge readouts.	- Low-pressure nuclear track reconstruction at ≈10 keV 1 keV ionization-energy threshold at high pressure Few MeV's-proton tracking at 10 bar in argon-based gas Reconstruction of MeV-nuclei with mm and sub-mm sampling at varying pressure and gas conditions Stability of reconstruction of nuclear-reaction byproducts over a large range of primary ionizations.	IRFU/CEA, GANIL, U Bonn, ANU, U Zaragoza, U Colorado, Fermilab, UH Manoa, MSU, RWTH Aachen, HUJI, U Bulsa, U Warwick, WIS, CNRS- IN2P3/UGA, ISNAP, U Coimbra, INFN-LNS, SINP Kolkata, U Hamburg, U Aveiro, U New Mexico, AUTH
Т3	Enhanced op- eration of pure or trace-amount doped noble gases	- Operation of m ² and ton-scale detectors with single-electron sensitivity and near-Fano level energy resolution	WG1, WG3 (3.2C) WG6, WG7	1.4 (and DRD2)	- Enhancement of electroluminescence (EL) yield in noble gases (scalability, light output) Single-electron detection Near-Fano energy resolution Stabilization of traceamount doping (mixing, purification) Barium tagging Stable amplification in dual-phase detectors Develop novel amplification structures	- Developing large-area (≥m²-scale) EL amplification: keeping energy resolution and single-electron sensitivity Imaging in low-diffusion gas A viable concept for Barium tagging or a viable roadmap towards it Very large-area (≥10m²-scale) camara-based 3D imaging Operation of resistive-protected detectors.	DIPC, IFIC, U Manchester, U Liverpool, U Coimbra, LIP-Coimbra, AstroCeNT, Ben- Gurion U, WIS, U Aveiro, AUTH

Table 12

TUDIC IZ								
#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes	
T4	Ultra-low-energy reconstruction of highly ionizing tracks (including R&D on negative-ion readout)	- Tracking of O(10keV) nu- clear tracks in a concept scalable to m ² and beyond	WG1, WG5, WG6, WG7	1.2, 1.4	- Track reconstruction of nuclei down to 10 keV energies or below Simultaneous tracking of nuclei and electrons Accurate dE/dx-sampling for electron and nuclei identification ML for complex topologies Negative-ion TPCs for 3D-tracking on large areas, and associated electronics Optical readout in a negative ion TPC Track-reconstruction on spherical counters.	- A technology demon- strator in the m ² scale, with O(10keV) tracking-threshold for nuclear tracks at O(10's of μm) sampling.	CERN, GANIL, ANU, IRFU/CEA, GSSI, INFN-RM1, INFN-PD, U New Mexico, STFC-RAL, MSU, UH Manoa, U Kobe, IHEP CAS, USTC, U Bolu-Abant, LIP-Coimbra, U Warwick, WIS, CNRS-IN2P3/UGA, ISNAP, U Coimbra, INFN-LNS, SINP Kolkata, U Hamburg, AUTH	
T5	Determination of the interaction time (T_0)	- Achieve a viable timing signal while keeping low electron dif- fusion and high amplification of the ionization signal	WG3 (3.1A)	1.4 (and DRD2)	To sensitivity for accelerator-based neutrino TPCs. To sensitivity in the reconstruction of low-energy nuclear recoils, via scintillation light or minority carriers in case of negative-ion TPCs. Explore the applicability of alternative methods (diffusion, positive ions) To-determination on spherical counters.	 Demonstration of track reconstruction and T₀-tagging for mini- mum ionizing particles at O(1 MeV)-threshold and high pressure. 	IFIC, U Liverpool, As- troCeNT, Ben-Gurion U, U Zaragoza, GSSI, USC/IGFAE, Fermilab, DIPC, ANU, WIS, U Hamburg, U New Mexico	
Тб	Modelling	- Develop a microscopic framework for computing scin- tillation and negative-ion yields, and trans- port	WG3 (3.1A, 3.2A), WG4	1.3,1.4	Modelling primary scintillation. Modelling secondary scintillation. Modelling ion transport and avalanche for electronegative mixtures. Modelling space charge.	Develop a framework for optical simulation that is integrated as part of the standard commu- nity tools, or develop a concrete implementa- tion path towards it.	CERN, U Bursa, USC/IGFAE, IFIC, U Aveiro, Astro- CeNT, GSSI, U Kobe, INFN-BA, WIS, DIPC, U Coimbra, SINP Kolkata, U Hamburg, U Aveiro, AUTH	
Т7	Gas mixtures and gas handling	Study new gas mixtures, oper- ated in conditions of high purity	WG3 (3.1B, 3.2C), WG6, WG7	1.3, 1.4	New gas mixtures for optical readout. New gas mixtures for negative-ion readout. Recirculation and recuperation systems. Purification of low-quenched mixtures.	 Develop alternatives to CF₄-based mixtures op- erated in open loop, or a viable path towards it. 	USC/IGFAE, DIPC, U Coimbra, CERN, U Liverpool, GSSI, INFN- RMI, U Zaragoza, Fermilab, RWTH Aachen, U Warwick, WIS, DIPC, ISNAP, U Hamburg, U Aveiro, U New Mexico, AUTH	
T8	Radiopurity	- Improve manu- facturing process and purifica- tion as well as material-selection standards	WG3		Radon emanation studies Mitigation of gaseous radioactive isotopes Material selection Develop radiopure amplification structures and radiopure optical cameras.	- Develop MPGDs and manufacturing techniques with high radiopurity.	USC/IGFAE, DIPC, U Liverpool, GSSI, U Zaragoza, U Hamburg	

DRD1-WG5 ↔ DRD7

Regroup:

- 1- Electroluminescence-based TPCs.
- 2- High Pressure TPCs for neutrino beams.
- 3- TPCs for nuclear physics.
- 4- TPCs aimed at providing event directionality down to keV-energies.
- 5- Radiopure TPCs with keV energy-threshold for rare event searches.

TPC – Community Meeting

July 5th 2023 via zoom

14:30 - 15:30 Discussion on WP4

16:00 - 17:00 Discussion on WP8

Both sessions will start with an introduction into DRD1 and the concepts of Working Groups and Work Packages

Followed by a discussion on participation possibilities and tasks