From "Organisation of the DRD7 collaboration" V6, 09/5/23:

- DRD7 is an R&D collaboration, and *will not provide a design or fabrication service for ASICs or other components*; this is the role of engineering teams at institutes and laboratories participating in the various DRD projects.
- Where common developments across DRDs are agreed, either of IP, or of complete devices or subsystems, DRD7 is available to set up a review and coordination body.
- Funding for specific electronic developments and prototypes in DRDs should be allocated to the relevant collaborations, with
 prioritisation decisions made by the collaborations as part of their funding request and review. In case of complex electronics
 developments (and in particular of ASICs), a review coordinated by DRD7 will be instrumental in lowering the development risk and
 limiting duplication of effort.
- Funding for DRD7 R&D and coordination activities will be separately requested, including the costs of common tools, the costs of
 specialised personnel (for instance, verification experts), specific R&D developments at both device and system level, and the technical
 facilities necessary for R&D.
- Proposals for R&D projects involving electronics and data-processing can be included in either detector-related DRDs or in DRD7, taking into account the following guidelines:
 - Projects in DRD7 will target common generic developments, or exploration of cutting-edge technologies requiring negotiated access to frameworks and complex design flows. They may involve high costs, expert coordination or unique expertise, and can possibly only be effectively delivered as a common community effort. They will follow design practices enabling later volume production in industry and/or using COTS components.
 - Projects in individual DRDs will target developments driven by DRD-specific requirements. They will typically be smaller-scale prototypes exploring or benchmarking novel concepts or technologies and delivering demonstrators. They will focus on diversity and originality, but will not necessarily be suitable for large-scale production.
- > We should try to identify if *common generic development* concerning ASIC and/or DAQ can be setup across our collaboration
- The targets of tasks in DRD1 WPs (see next slides) are overlapping in many aspects, but still they may require separate developments
- Building blocks and IPs (ASIC sub-blocks, FPGA IPs or software components) may be exchanged within the DRD1 and DRD7 communities, with coordination from relevant bodies.

Т3	New front-end electron	- 1 fC threshold - High-sensitivity	WG5, WG7	1.1	- Integration of in the detector Far		IFIN-HH, INFN-FE,	#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
		electronics to help achieving stable and efficient operation up to ≈MHz/cm ²	(7.1,2)		cage - Integration of tronics and readout	based on gas de- tector simulation and experimental measurements - Development	INFN-BA, INFN-BO, INFN-TO, IRFU/CEA, IPPLM,	T4	Low-power FEE	- <5 mW/ch for >10 ⁶ pad TPC - ASIC de- velopment in 65 nm CMOS	WG5	1.3	- Continuous vs. pulsed	- Present stable opera- tion of a multi-channel TPC prototype with a low- power ASIC	IHEP CAS
						and test of a front- end prototype - High throughput multichan- nel FE (peak time/amplitude based VMM3a): performance studies and opti- mization.	INFN-RM2, U Cambridge, CERN	T1	Development of high-granularity demonstrators	 Cell size ≈1 cm² Channel count ≈10k per m² 	WG5, WG7 (7.2)	1.1	 Innovative signal- induction structures to balance readout cost and performance Front-end electronics 	- Performance validation of a technology demonstrator in- beam	VUB and UGent, IP21, MPP, WIS, INFN-RM2, CERN, INFN- NA, INFN-RM3, INFN-BA, INFN- LNF, CIEMAT, Istinye U, U Cambridge
T4	Optimization of scal able multichannel read out systems		WG5	1.1, 1.2	 FPGA-based arch ture FPGA with embe processing for trijing and ML Basic firmware software can be strapped from exi readout system 	by the end of 2024 for com- missioning at test beam and boot- Readout: Contin-	IFIN-HH, INFN-BO, U Bonn, IPPLM, CIEMAT, CERN	T4	FEE	- Stability at high input capacitance - Low noise - Large dynamic range	WG5	1.2		- Present an ASIC con- cept/prototype	IFUSP, NISER Bhubaneswar, INFN-PD, INFN-TS, AGH- Krakow, IPPLM, U Manchester, MSU, SBU, JLab, DIPC
T	Development of	- High bandwidth WG5,	1.1,	- Ach	ieve efficient clus-	systems, syn- chronization with other DAQs.	IHEP CAS,	T5	Low-noise FEE	 High input capacitance Large dynamic range Fast rise time Sensitivity to 	WG5	1.2		sign - Full GSI, MP readout-chain PV, LIF for multichannel U Mancl readout solutions JLab, II	IP21, IRFU/CEA, P, INFN-PD, INFN- -Coimbra, CERN, hester, MSU, SBU, NFN-TO, RBI, U , INFN-RM2
	front-end ASICs for cluster count- ing	- High gain WG7 - Low power (7.2) - Low mass	1.2		ounting and cluster g performances	tion and test of the first prototype of the front- end ASIC for cluster	CNRS-LSBB, INFN-RM1, INFN-LE,			- Sensitivity to small charges - Low noise				(discrete and ASICs)	
						counting	INFN-PD, INFN-BA, INFN-TO, SBU, IPPLM		2 Enhanced oper- ation of charge readout across gas densities	 Achieve an ionization-energy threshold of at least ≈keV in the 	WG1, WG5, WG6, WG7	1.2, 1.4	- High avalanche gain across gas densities in CF ₄ , H ₂ , He, Ar, Xe -based TPCs with	 Low-pressure nuclear track reconstruction at ≈10 keV. 1 keV ionization-energy threshold at high pressure. 	IRFU/CEA, GANIL, U Bonn, ANU, U Zaragoza,
T	Develop scalable multichannel DAQ board	 High sampling rate Dead-time-less DSP + filtering Time stamping Track triggering 	1.1, 1.2	ture	GA-based architec- , algorithms-based are	- A working prototype of a scalable multichan- nel DAQ board	IHEP CAS, INFN-LE, INFN-BA, UW-Madison, IPPLM, INFN-BO		gas uchanics	range 10 mbar to 10 bar (and, in the case of noble gases, to saturated vapours and even to the liquid state) with a scalable			keV-sensitivity. - Fine track sampling capabilities in the range of 10's of μm to few mm. - High-density and low-power electronics,	 Few MeV's-proton tracking at 10 bar in argon-based gas. Reconstruction of MeV- nuclei with mm and sub-mm sampling at varying pressure and gas conditions. Stability of reconstruction 	U Colorado, Fermilab, UH Manoa, MSU, RWTH Aachen, HUJI, U Bursa, U Bolu-Abant, U Warwick,
Т	4 Optimization of electronic readout and ASIC devel- opment	 Time readout with sub-ns precision Leading and trailing edge time readout 	WG5, WG7 (7.1- 2)	1.1	- Dedicated R&D on ASIC	ment - Development of readout system	INFN-PV, MPP, HUJI, JU-Krakow, AGH-Krakow, CERN, U Bursa, U Manchester, U South Carolina, INP-Almaty			concept. - Reconstruction of MeV-nuclei of variable stopping power, with mm and sub-mm sam- pling.			with the ability to self-trigger. - TimePix-based charge readouts.	of nuclear-reaction byprod- ucts over a large range of pri- mary ionizations.	WIS, CNRS- IN2P3/UGA, ISNAP, U Coim- bra, INFN-LNS, SINP Kolkata, U Hamburg, U Aveiro, U New Mexico, AUTH , U Kobe

- Front-end ASIC development mentioned 8 times -> is there potential for common developments?
- DAQ development mentioned 3 times

Electronics wish-list in DRD1

- High performance charge-sensitive front-end circuit specific for medium and large volume gaseous detectors (MPGD, TPC, drift chambers, straw tubes, RPC, ...)
 - High input capacitance (2-2000 pF)
 - Low noise/high sensitivity (eg. ~100e@2pF)
 - Low power (~ mW/ch)
 - High dynamic range (12-14bits, 1:50000)
 - Precise timing (10-100ps)
 - High event-rate (1MHz/cm2 -> @1m x 1mm sensitive area/ch -> 10MHz/channel)
- Architectural innovations R&D
 - Versatile front-end circuitry (variable parametric front-end and shaping circuit, variable resource distribution,...)
 - Cluster-counting (continuous readout, 1GHz analog bandwidth front-end, 2GSps high-sampling rate, on-line processing with direct mathematical algorithms or Machine Learning)
 - Deadtime-less readout, self-trigger vs continuous sampling with digital data compression
 - High-rate data-acquisition (> 1MHz/ch, up to Tb/s total DAQ bandwidth scalable systems mapped on switched networks)
 - Signal/Event Processing on- or off-chip (eg. peak finding, baseline restoration, feature extraction, ... reusable IP library for online use in FPGA/ASIC or offline in software)
- Technological developments
 - High-voltage tolerance/spark protection
 - Detector biasing via ASIC (eg TSV for HV)
 - Combined detector & electronics assembly technology, cooling & services integration (integration of the FE electronics in the detector Faraday cage)

DRD7 Working Groups

High-rate scalable DAQ

	 WG 7.1: Data density and power efficiency Szymon Kulis (CERN), Jeffrey Prinzie (KU Leuven), Jan Tracka (CERN) 	 WG 7.5: Backend systems and COTS Conor Fitzpatrick (Uni Manchester), Niko Neufeld
	 Jan Troska (CERN) High data-rate ASICs and systems New link technologies, including silicon photonics technology Power conversion and efficiency optimisation 	 (CERN), NN Use and adaptation of advanced COTS technologies Real-time software and firmware development System-level control and readout WG 7.6: Complex imaging ASICs and
Versatile front-end	 WG 7.2: Intelligence on the detector Davide Ceresa (CERN), Francesco Crescioli (IN2P3-LPNHE), Frédéric Magniette (IN2P3-LLR) Front-end programmability and modular design Intelligent power management Advanced data reduction techniques 	 technologies Marlon Barbero (IN2P3-CPPM), Michele Caselle (KIT), Iain Sedgwick (RAL), Walter Snoeys (CERN) Common access framework to selected imaging technologies Common IP for imaging ASICs
Precise timing, / ADC & TDC	 WG 7.3: 4D and 5D techniques Sophie Baron (CERN), Marek Idzik (AGH-Kracow), Adriano Lai (INFN-Cagliari) High-performance sampling High-precision timing distribution Novel on-chip architectures 	 3D integration and interconnects WG 7.7: Tools and technologies Kostas Kloukinas (CERN), Xavi Llopart (CERN), Mark Willoughby (RAL) Access and support to qualified technologies and tools Investigation of emerging microelectronics
	 WG 7.4: Extreme environments Giulio Borghello (CERN), Oscar Francisco (Uni- Manchester), Manuel Rolo (INFN-Torino) Cryogenic technology and operation Thermal management of ASICs Radiation hardness 	technologies

- Gaseous detector type front-end does not seem to be represented. Perhaps we can propose a sub-task (eg. in WG 7.6)
- Common developments focusing on a smaller number of optimisation directions which could satisfy requirements of
 more detector technologies and applications would bring more visibility and support
- Exchange and/or common development of building blocks and IPs (ASIC sub-blocks, FPGA IPs or software components) should be encouraged

Backup slides

Task	Performance goal	Comments	Possible deliverables next 3-5 y
(Muon systems) New front end electronics	 - 1 fC threshold - Geometrical avalanche quenching - High sensitivity electronics and new detector structures to achieve stable and efficient operation (rate, occupancy) up to O(MHz/cm2) 	 Study of the integration of the FE electronics in the detector Faraday cage Study of the integration of electronics and readout PCB 	 Conceptual electronics design based on gas detector simulation and experimental measurements Development and test of a front-end prototype
(Large-volume drift chambers) Front-end ASIC for cluster counting	 High bandwidth High gain Low power Low mass 	achieve efficient cluster counting and cluster timing performances	full design, construction and test of a first prototype of the front-end ASIC for cluster counting
(Straw chamber) Electronic readout, ASIC	 Time readout with sub-ns precision Leading edge and trailing edge time readout 	- Dedicated R&D on ASIC	- ASIC - Readout system
(Time Projection Chambers) Low-power FEE	•< 5 mW/ch for >1e6 pad TPC - ASIC development in 65 nm CMOS	•continuous vs. pulsed	- Present stable operation of a multi- channel TPC prototype with a low- power ASIC
(Gaseous photon detectors) FEE	 High input C Low noise large dynamic range 	•	- present an ASIC concept/prototype
(Gaseous timing detectors) Low-noise FEE	 High input C large dynamic range Fast rise time sensitivity to small charge Low noise 	•	Define an ASIC

Task	Performance goal	Comments	Possible deliverables next 3-5 y
(Muon systems) Scalable multichannel readout system	•Front-end link concentrator to a powerful FPGA with possibilities of triggering an O(20GBit/s) to DAQ	 FPGA based architecture FPGA with embedded processing for triggering and ML Basic firmware and software can be bootstrapped from existing readout system 	First prototype by end of 2024 for commissioning at test beams
(Large-volume drift chambers) Scalable multichannel DAQ board	 High sampling rate Dead-time-less DSP and filtering Event time stamping Track triggering 	 FPGA based architecture ML algorithms-based firmware 	working prototype of a scalable multichannel DAQ board
(Straw chamber) Electronic readout, ASIC	 Time readout with sub-ns precision Leading edge and trailing edge time readout 	- Dedicated R&D on ASIC	- ASIC - Readout system