Task	Barformonos Cool	DDD1	ECEA	Commente	Dalia mant 2 a	Interested Institutes
Тазк	Performance Goar	WGs	DRDT	Comments	Denv. next 5 y	Interested Institutes
New front-end electronics (WPI - Muon Systems)	 1 fC threshold High-sensitivity electron- ics to help achieving stable and efficient operation up to ≈MHz/cm² 	WG5, WG7 (7.1,2)	1.1	Integration of FEE in the detector Faraday cage Integration of electronics and readout PCB	 Conceptual electronics design based on gas detector simulation and experimental measurements Development and test of a front- end prototype High throughput multichannel FE (peak time/amplitude based VMM3a): performance studies and optimization. 	IFIN-HH, INFN-FE, INFN-BA, INFN-BO, INFN-TO, IRFU/CEA, INFN-RM2, U Cambridge, CERN, MPP.
Development of front-end	 High bandwidth 	WG5,	1.1,	 Achieve efficient cluster 	- Full design, construction and test	IHEP CAS, CNRS-
ASICs for cluster counting (WP2 - Drift Chambers)	- High gain - Low power - Low mass	WG7 (7.2)	1.2	counting and cluster timing performances	of the first prototype of the front-end ASIC for cluster counting	LSBB, INFN-RM1, INFN-LE, INFN-PD, INFN-BA, INFN-TO, SBU, IPPLM
Optimization of electronic readout and ASIC develop- ment (WP3 - Straw Chambers)	 Time readout with sub-ns precision Leading and trailing edge time readout 	WG5, WG7 (7.1- 2)	1.1	- Dedicated R&D on ASIC	 ASIC development Development of readout system 	INFN-PV, MPP, HUJI, JU-Krakow, AGH- Krakow, CERN, U Bursa, U Manchester, U South Carolina, INP-Almaty
Pixel-TPC development (WP4 - Time Projection Chambers)	 Produce 50000-60000 Grid- Pixes to read out a full TPC Achieve dN/dx counting- resolution < 4% 	WG5, WG7 (7.1- 2,5)	1.1	 InGrids (grouping of channels) Low-power FEE Optimization of pixel size (>200 µm) or cost reduc- tion 	 Provide a large-area pixel-based (InGrid) readout module Measuring IBF for GridPix. Re- duction with double-mesh Present dN/dx measurements in beam Small area prototypes of MPGD/TimePix hybridisation. 	U Bonn, U Carleton, WIS, CERN
Low-power FEE (WP4 - Time Projection Chambers)	- <5 mW/ch for >10 ⁶ pad TPC - ASIC development in 65 nm CMOS	WG5	1.3	- Continuous vs. pulsed	- Present stable operation of a multi- channel TPC prototype with a low- power ASIC	IHEP CAS
FEE cooling (WP4 - Time Projection Chambers)	- Operate 10 ⁶ channels per end-plate	WG5	1.2	 Two-phase CO₂ cooling Micro-channel cooling with 300 µm pipes in carbon fiber tubes 3D printing: complex structures, performance optimization, material selection 	- Present a prototype of a cooling system for the 10 ⁶ pad TPC option	IRFU/CEA, U Lund, INFN-PI, INFN-LE, INFN-PD
Development of high- granularity demonstrators (WP5 - Calorimetry)	- Cell size ≈1 cm ² - Channel count ≈10k per m ²	WG5, WG7 (7.2)	1.1	Innovative signal- induction structures to balance readout cost and performance Front-end electronics	- Performance validation of a tech- nology demonstrator in-beam	VUB and UGent, IP21, MPP, WIS, INFN-RM2, CERN, INFN-NA, INFN-RM3, INFN-BA, INFN-LNF, CIEMAT, Istinye U, U Cambridge
FEE (WP6 - Gaseous Photon Detectors)	 Stability at high input capac- itance Low noise Large dynamic range 	WG5	1.2		- Present an ASIC con- cept/prototype	IFUSP, NISER Bhubaneswar, INFN- PD, INFN-TS, AGH- Krakow, IPPLM, U Manchester, MSU, SBU, JLab, DIPC
Low-noise FEE (WP7 - Gaseous Timing Detectors)	High input capacitance Large dynamic range Fast rise time Sensitivity to small charges Low noise	WG5	1.2		 ASIC design - Full readout-chain for multichannel readout solutions for timing ≈10 ps (discrete and ASICs) 	USTC, ĪP2I, IRFU/CEA, GSI, MPP, INFN-PD, INFN-PV, LIP-Coimbra, CERN, U Manchester, MSU, SBU, JLab, INFN-TO, RBI, U Tsinghua, INFN-RM2

Table 1: Tasks related to front-end electronics in DRD1 Work Packages. The mentioning of Institutes in the draft should be considered exclusively as a preliminary expression of interest or as potential involvement given the role of the institute in the field.

Task	Performance Goal	DRD1	ECFA	Comments	Deliv. next 3 y	Interested Institutes
		WGs	DRDT			
Optimization of scalable multichannel readout sys-	- Front-end link concentra- tor to a powerful FPGA with	WG5	1.1, 1.2	 FPGA-based architecture FPGA with embedded 	- First prototype by the end of 2024 for commissioning at test beam	IFIN-HH, INFN-BO, U Bonn, IPPLM,
tems	possibilities of triggering and			processing for triggering	- SRS/VMM3a Readout: Contin-	CIEMAT, CERN
(WP1 - Muon Systems)	$\approx 20 \text{ GBit/s to DAQ}$			and ML Decis formulation and coff	uous and trigger mode, distributed	
				- Basic Inniware and son- ware can be bootstrapped	DAOs	
				from existing readout sys-	21120.	
				tem		
Develop robust, compact,	- 256 channel readout	WG5		- Muon rates from few Hz	- Deployed and tested at depth	OXY
and low power DAQ for	- 100 w or less			to few events per day		
Iow rates	- 1200 cc DAQ volume					
(WP1 - Muon Systems)	- Rugged design for remote					
	erations					
Develop scalable multi-	- High sampling rate	WG5,	1.1,	- FPGA-based architecture	- A working prototype of a scalable	IHEP CAS, INFN-
channel DAQ board	- Dead-time-less	WG7	1.2	- ML algorithms-based	multichannel DAQ board	LE, INFN-BA,
(WP2 - Drift Chambers)	- DSP + filtering	(7.2)		firmware		UW-Madison, IP-
	- Time stamping					PLM, INFN-BO
	- Track triggering					

Table 2: Tasks related to Data Acquisition Systems in DRD1 Work Packages. *The mentioning of Institutes in the draft should be considered exclusively as a preliminary expression of interest or as potential involvement given the role of the institute in the field.*