LINAC Activities

Alessandra Lombardi and the HSL team

Introduction

- Activities on the source brightness
- Activities on RFQ redesign
- Conclusions and outlook

LINACs for v-fact or μ -collider – CERN 2010

SPL parameters

Parameter	Unit	Low Current	High Current		
Energy	[GeV]		5		
E Beam power	[MW]	4			
Rep. rate	[Hz]	50			
Av. pulse current	[mA]	20	40		
Peak pulse current	[mA]	32	64		
Source current	[mA]	40	80		
Chopping ratio	[%]	ć	52		
Beam pulse length	[ms]	[ms] 0.8			
Protons per pulse		10	014		
Beam duty cycle	[%]	4	2 2		
Length	[m]	~!	500		

Building blocks of the superconducting part

ISO4 vs ISO3: What's new?

IS03 and IS04 have identical plasma generators:

- Plasma chamber.
- RF system (amplifier and antenna).
- Gas injection system.
- Cesiation system.

ISO3 and ISO4 have different extraction and electron dumping schemes

IS04 vs. IS03

- Simplified design with only plasma, puller and ground electrodes: Eliminated puller-dump and Einzel lens causing emittance growth. 6 cm shorter.
- Co-extracted 45 keV e⁻ onto a dedicated dump.

IS04 – Dumping 45 keV e⁻

Test Stand results

-40

-60

-80

-20

-10

0

y (mm)

-40

-60

-80

-20

-10

0

x (mm)

10

20

With IS04 better quality beam at the test stand during 2021 (run for 20 weeks total)

10

20

WP3 Proton Complex Meeting #7 21/4/2023

Confirmed at LINAC4 19-23 November 2021

RFQ V=3.2 MV (operational): Comparable performance (and potentially better with further optimization) for beam current <40 mA but considerably better above that.

						Li	nac4 fixed-disp	olay								h
LIN	AC 4 Fix	ed Dis	play									23	-11-2	2021	17:2	5
stat	us OK								5	/ 39		MD1	. [Dest:	DL	N
	L4L		L4D	L4C	L4P	L4T1	L4Z		L4	T2		L	.T	Ľ	ΓВ	
113	37 3113	4013		0117	0117	0107	0273	0673	1043	1243	1553	30	40	50	60	
-50	.4 -42.0	-0.1		0.0	0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	83%	0%		114		0%										
				0214												
	WD BS					WE	BS				WD			V	٧D	Λ
C	omment	s: 15-I	lov-2	021	AUTO	P. LE	BT M	EBT		F	RF Info				BI	s
	08:55:43	CCC:	: 7667 or:	'1	l[set] -45	.00 -2	4.50	DEC							
	A. Lom	bardi 1	60103	3	I[avg] 0.	00 C	0.00	REQ	Cho	Bur	nch	ווס	-	κF.	
Sou	urce test-	RF he	ater c	urves	e/ŀ	I-[avg]	С	0.00	CCDTL	. PIMS	5 DEE	BUN	INTL	K		

RFQ V=3.36 MV: 42 mA out of the RFQ for 50.4 mA input - RECORD

IS04 installed as operational source 2023

Allows for Machine Developments at higher current

On 02/03/2023 we increased the source current in steps to 50 mA.

- 35 mA at 160 MeV in the L4Z and in the LBE.
- Reaching the limit of cavities available RF power. 3 MeV chopping needed.
- Small difference on L4Z transverse emittance comparable to what found with 30 mA.
- 352 MHz bunch length ? No clear conclusion as our diagnostic suddenly gave larger phase spread even for the nominal.
- 35 mA transverse emittance measured at the LBE...

LINAC	C 4 Fix	ed Dis	play										02	2-03-20	023 12	:03:33
status	OK										3 / 3	23 :	MD1	.0 De	est: D	UMP
	L4L		L4D	L4C	L4P	L4T1	L4Z		L4	1T2		LT		LT	в	BI
1137	3113	4013		0117	0117	0107	0273	0673	1043	1243	3 1553	30	40	50	60	10
-52.1	-38.3	-34.7		-34.9	-28.8	-34.5	-34.5	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
	73%	90%		100%	82%	119%	100%									
				114												
				0214				_								
V	VD BS	6					WD BS	5				WD			WD	WD
Con	nment	s: 01-N	/lar-20	23 /	AUTOP.	LEBT	MEBT		R	F Info		Phase		E	BIS	
P.S	14:44 Skowro	16 C0 2005ki (*	ora.: 161028	3)	l[set]	-35.00	-25.00			bon	Rupph	DTI		DE		NLI
	CC	C: 766	71	/	I[avg]	0.00	0.00	R	Ω L	nop	Bunch	DIL		RF		<u>п</u> - 0
Deb	bunche	r fault,	beam	to	e/H-[avg]	0.84	CCI	DTL P	IMS	DEBUN	INTLK				00

35 mA at the PS Booster

- H and V emittances very similar.
 - Well within PSB matching tolerances.
 - Always influenced by the dispersion in H.
 - A small E spread (100 keV) measurement would make more sense.

Source summary and outlook

- 35 mA at 160 MeV.
 - With a reasonable RFQ voltage...
 - Chopping pattern needed to relax on the RF power side.
 - Transverse emittances look under control, with NO re-matching in the Linac4 above 3 MeV.
- What's next experimentally
 - Inject in the PSB 10th may
 - Look at a different MEBT optics Could request some iterations...
 - Optimise also ...
 - RFQ level.
 - Source and LEBT.
 - MEBT quad settings.
- What's next calculations and R&D
 - Optimise extraction and low energy
 - Study direct injection into the RFQ

Common design guidelines

- Input/output energy : 45 keV/3MeV;
- a two-term potential vane profile, a constant average aperture radius and a constant transverse radius of curvature for an easier tuning and the possibility of machining with a 2D cutter;
- Constant voltage profile;
- Transmission higher than 90% for emit=0.5µm rms normalised I=70mA

RFQ design – copper

General Guidelines:

- Stay below the RFQ1 line
- Transmission>90 for emit=0.5 mm mrad and I=70mA
- rho/ro=0.7 -1
- Two versions
 - L=4.5 m to avoid dipole rods
 - L=as short as possible.

4.5 m	
RFQ paramete	ers
Length m	4.5
Vane voltage kV	79
Max electric field (MV/m)	33
Peak RF power kW	750
Average aperture (r0) mm	3.2
Transverse radius (p)	2.7
Maximum modulation	1.5
Minimum aperture mm	2.5
Focusing parameter (B)	5.87
Phase at gentle buncher deg	-35
Transmission % (70mA , 0.5 mm mrad)	93.2

14

Beam dynamics – 70mA emit =0.5mm mrad

Beam at the RFQ output plane

modulation, aperture and phase vs length (cm)

3.9 m	
RFQ paramete	ers
Length m	3.9
Vane voltage kV	79
Max electric field (MV/m)	33
Peak RF power kW	650
Average aperture (r0) mm	3.2
Transverse radius (p)	2.2
Maximum modulation	1.8
Minimum aperture mm	2.2
Focusing parameter (B)	5.76
Phase at gentle buncher deg	-32
Transmission % (70mA , 0.5 mm mrad)	95.4

Beam dynamics – 70mA emit =0.5mm mrad

Phase-

Beam at the RFQ output plane

RFQ design – new material

General Guidelines:

- Field up to 50MV/m for 78 kV (cryo-copper)
- Respect scaling
 - 120kV and 42.3 MV/m
 - 140kV and 39.3 MV/m
- Transmission > 90% for emit=0.5 mm mrad and I=70mA
- rho/ro=0.7 -1
- L as short as possible
- Best beam quality

2.5 m 120 kV

RFQ parameters						
Length m	2.5					
Vane voltage kV	120					
Max electric field (MV/m)	44					
Peak RF power kW	960					
Average aperture (rD) mm	4.1					
Transverse radius (p)	4.1					
Maximum modulation	2.2					
Minimum aperture mm	2.4					
Focusing parameter (B)	5.54					
Phase at gentle buncher deg	-32					
Transmission % (70mA , 0.5 mm mrad)	91.2					

RFQ length (cm)

pole tip max field (MV/m) vs lenght (cm)

modulation, aperture and phase vs length (cm)

Beam dynamics – 70mA emit =0.5mm mrad

-0.10

-60

-30

Beam at the RFQ output plane

30

60

20

0

Transverse (x, y top) and longitudinal planes (phase, energy spread) along the RFQ

Comparison of performance-method

- Comparison of performance
 - Simulations
 - Current through the RFQ

- Parameters :
 - emittance at the RFQ input plane : 0.2 to 0.9 μm
 - Matching :
 - Transverse beam distribution : uniform, parabolic, gaussian
 - Current : range 0-60mA
 - Energy dispersion

Comparison of performance – results

Current of 60 mA needs to fit in an emittance of 0.4 for RFQ1 vs in an emittance of 0.8 for RFQ3 to give 48mA out of the RFQ

transmission vs emittance at fixed current - 60 mA

Summary

- The SPL design of 2010 still holds
- Substantial progress on the source brightness and more avenue to explore – low current target is met.
- There are 3 designs for an RFQ that fits the specifications of LINAC4 at higher beam current and emittance. All designs have a transmission of more than 90% for a beam of 70mA with rms emittance 0.5 mm mrad. Two of the RFQ designs are based on RF parameters similar to RFQ1 whereas a very short RFQ is based on a surface field higher than what is attainable with room temperature copper.