

Improved calorimeter reconstruction at **Muon Collider**

Detector performance and MDI meeting, 11/4/2023

JON Collider

llaboration

Istituto Nazionale di Fisica Nucleare

Lorenzo Sestini **INFN-Padova**

- In this talk: photon reconstruction with the PbF₂ semi-homogeneous calorimeter Crilin
- An optimized strategy for BIB mitigation has been defined
- The integration time is discussed for the first time with the full simulation
- Results are compared with the photon reconstruction configuration reported in the EPJC paper: https://arxiv.org/pdf/2303.08533.pdf where the W-Si calorimeter designed by CLIC is used

- The ECAL barrel with Crilin technology has been implemented in the Muon Collider simulation framework
- As for the other detectors, the implementation is done with the DD4HEP interface to Geant4
- It is longer than previous studies: from 40 mm length cell to 45 mm, to increase the number of X₀ (from 18.8 to 21.5)
- 5 layers of 45 mm length, 10 X 10 mm² cell area. Dodecahedra geometry
- In each cell: 40 mm PbF₂ + 3 mm SiPM + 1 mm electronics + 1 mm air

Constant of the second s

- The procedure in applied to both Crilin ECAL and W-Si ECAL
- Photon gun at 8 different energies * 3 angles wrt z-axis:
 - 10,25,50,75,100,125,150,175 GeV
 - 1.05, 1.31, 1.57 rad
- 1000 signal events per point. 1 full BIB bunch-crossing at 1.5 TeV for Crilin, 1000 BIB bunch-crossing for W-Si
- Simulation with ddsim of both signal and BIB
- Signal+BIB overlay with Marlin
- Digitization+Clustering with Marlin: DDCalo_Digi + PandoraPF
- A calibration function is applied (explained later)
- For each energy point, the cluster energy distribution is fitted with a double-side Crystal Ball: $\langle E \rangle$ and σ are extracted

Methods

• The integration time has two main effects

I have implemented these two effects in DDCaloDigi processor (for Crilin)

The amount of integrated BIB energy

Calibration curves: true photon energy as a function of the peak <E>

After the calibration there is no significant impact on the resolution (no BIB)

Integration time (signal)

Peak resolution after calibration

Using 0.25 ns as integration time in the Overlay processor to speed-up the reconstruction leads to an underestimation of the BIB energy

In this study integration time = 25 ns

Integration time (BIB)

BIB

Each layer is divided in five regions along z to determine thresholds

- In each cell the energy of many BIB hits is integrated: cell energy distributions are not trivial
- In this slide the cell energy distributions for the BIB are obtained in the central z region
- It is clear that we have to take profit of the segmentation

cell energy distributions are not trivial obtained in the central z region n

Thresholds are defined as

 $E_{th}(L,Z) = \langle E_{BIB} \rangle (L,Z) + N \cdot STD_{BIB}(L,Z)$

Where <*E*_{BIB}>(*L*,*Z*) is the average and *STD*_{BIB}(*L*,*Z*) is the standard deviation of BIB cell energy in layer *L* and region *Z*

N is a parameter to be tuned with Signal+BIB

- Lower *N* means higher efficiencies and fake rate
- Not-trivial relation between N and peak resolution

Resolution for photon energy = 10 GeV (before calibration)

Calibration curves obtained at different angles are compatible

 Typical energy of clusters produced by jet fragmentation is lower than 10 GeV 	5000
 Optimization shown in this talk does not work in this range, thresholds tuned for 10 GeV photons eliminate the jet signal 	4000 3000
 However the same strategy can be applied in this energy range -> work on-going 	2000
	1000

Jet reconstruction

- This talk does not demonstrate that Crilin is better than W-Si: the message is that with a proper
- However Crilin is particularly suited for this mitigation strategy: having thicker layers, the BIB energy is integrated in large volumes, reducing the statistical fluctuations of the average energy
- Moreover Crilin has just 5 layers wrt to 40 layers of the W-Si calorimeter, less readout channels and it costs a factor 10 less
- The same strategy is being applied to the jet reconstruction: different energy range than >10 GeV photons
- Prospects: test Crilin as Endcap ECAL

reconstruction strategy we can mitigate the impact of the BIB, and obtain the target performance

Thanks for your attention!

