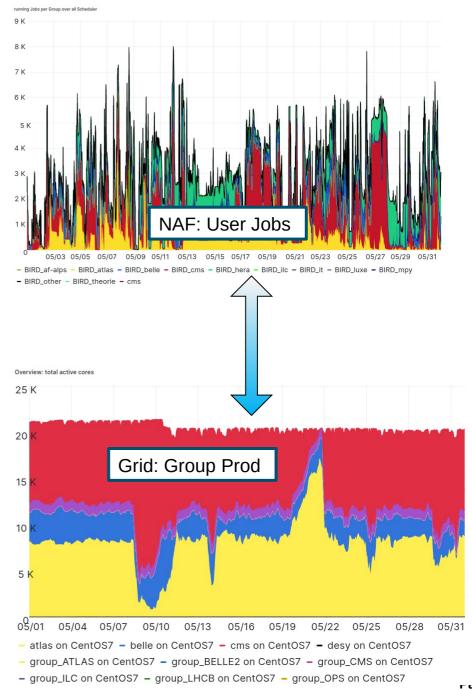
Status of the DESY-HH Clusters

News and lesser news

Christoph Beyer, Martin Flemming, Krunoslav Sever, Thomas Hartmann Luca Gebhardt, Joja Meyn, Christian Voss DESY IT

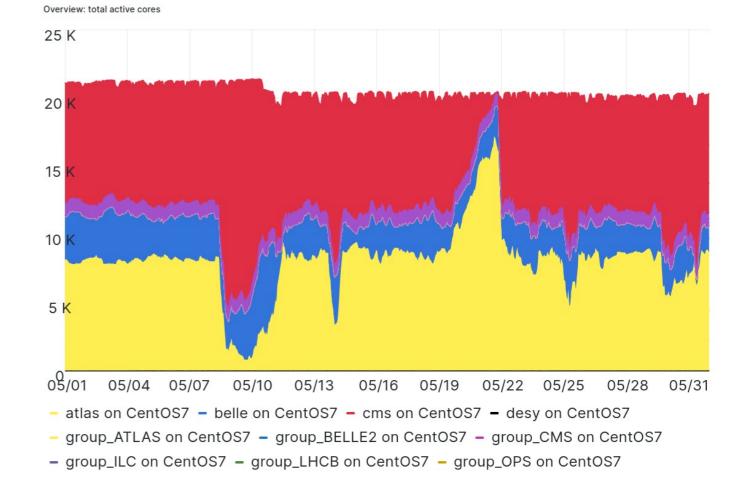


HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Reminder: NAF and Grid Clusters

HTC Clusters at DESY-HH

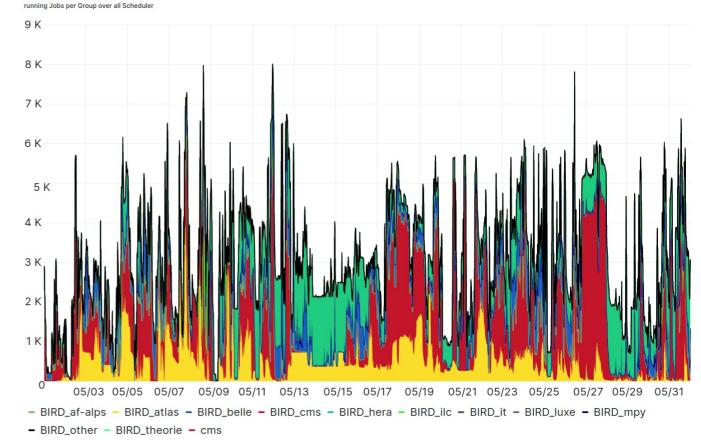
- 2 HTC clusters
 - User jobs: National Analysis Facility
 - Group Production: Grid
 - Logical separated
 - Same code and admin base
- Differing workloads
 - Different energy saving options
 - Different Problems Challenges
 - Abandoned idea somewhat to unify both



Grid Cluster at DESY-HH

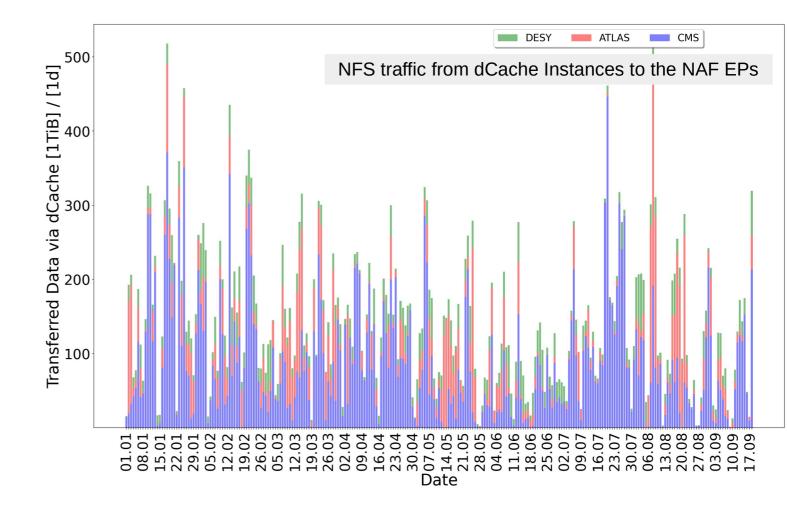
HTCondor Cluster for HEP Communities

- Primarily HEP Groups
- Centralized pilot jobs
 - Group Production Payloads
- Goal: Full utilization 24/7/365
- Job start up latency not critical


- Submission via HTCondorCE
- No shared FS

User Cluster: National Analysis Facility

HTCondor Cluster for German HEP Users


- Individual users
- Remote Submission via Workgroup Servers
 - Dedicated Scheduler & Token Renewal
- Utilization dynamic
- Overall utilization depends on work hours, holidays, ..., deadlines, conferences
- Job start up latency relevant for user satisfaction
- Shared FS's (AFS, dCache/NFS4, GPFS/NFS4)

User Cluster: National Analysis Facility

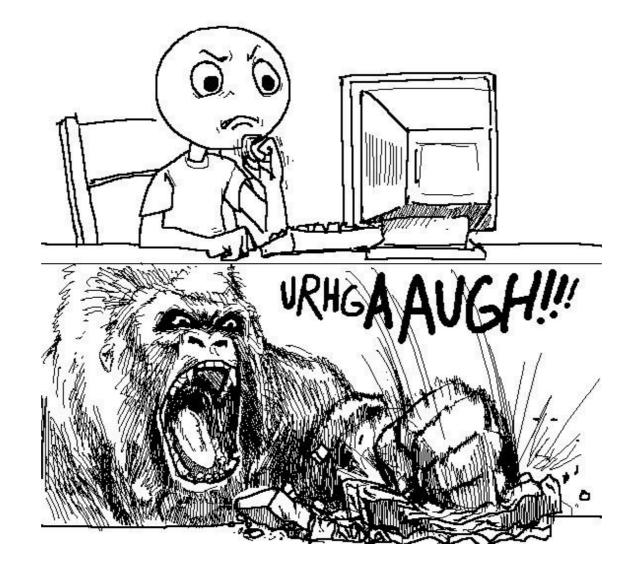
File I/O

- Users love paths/POSIX
- NFS protocol of choice
 - Access authz: POSIX user:group
 - dCache: long-term storage + Grid

Energy Consumption

Optimizing the Cluster Energy Profiles

Adapting to Green Energy and becoming more dynamic



See Christoph's Talk

https://indico.cern.ch/event/1274213/contributions/5570403/

Operating Systems

Changes in Linux Ecosystems

Changes in Linux Ecosystems

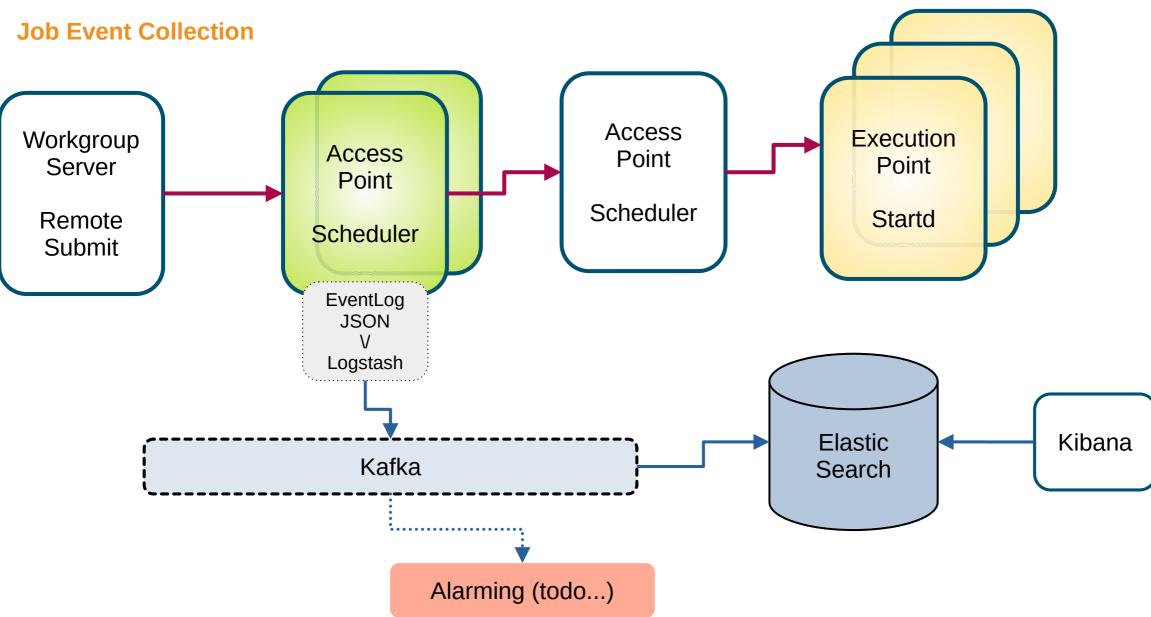
RHEL & Debian Flavours

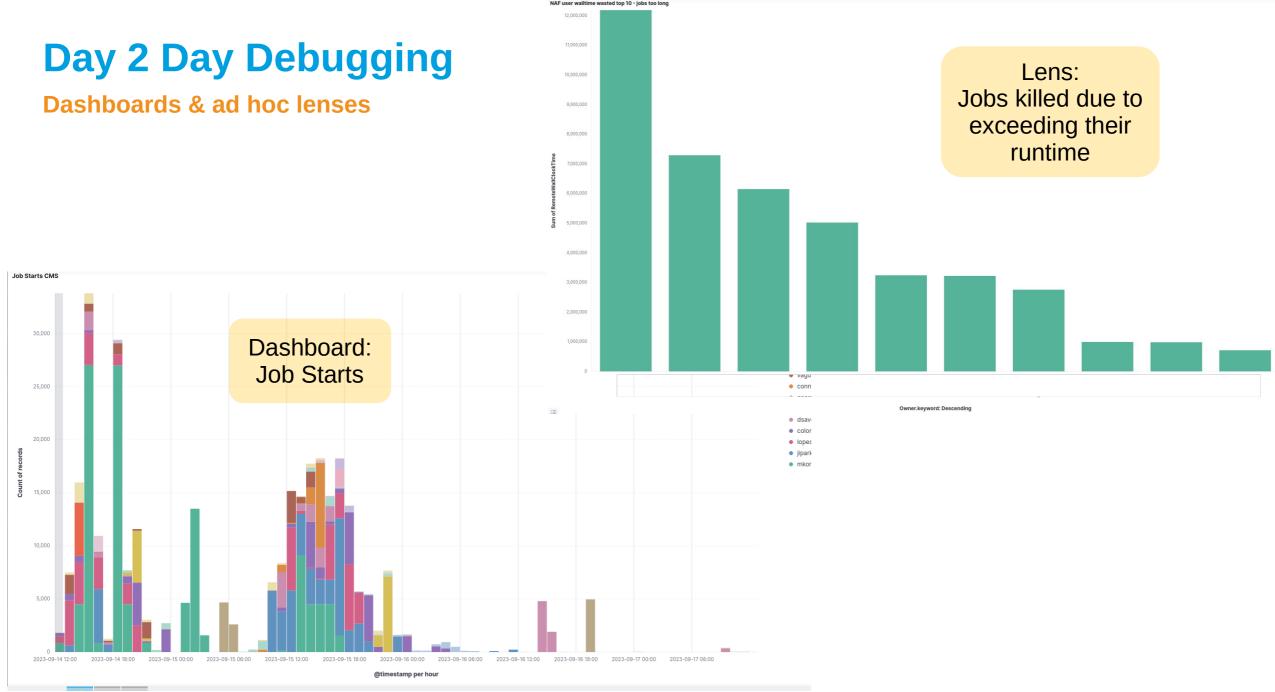
- Production Clusters still on CentOS 7
- Had been preparing move to AlmaLinux 9
 - Had no trust in CentOS Stream and aimed for Alma as EL clone
 - Significant changes (again) to the RHEL flavoured niches
- Evaluating Ubuntu now as well
 - Need "Enterprise" OS for other systems going for Ubuntu there
- Middleware/Accounting status beyond EL7 unclear

Cluster Plans

RHEL & Debian Flavours

- Initial plan was
 - Alma9, cgroups v2, Condor_{feature} 10.X, CondorCE 6,...
 - Cluster sec to tokens
 - Fully embrace the new illustrious Grid/CE token world
 - Evaluating Grid Middleware/accounting alternatives
 - AUDITOR from Uni Freiburg


Monitoring


Embracing Job Events

Powerful Tool

- Job events have become central to our cluster maintenance
 - (pull) time series nice but (push) detailed job events powerful to understand the cluster
 - Who else is using job events?
- NAF users occassionally with workflows straining the systems
- Straight forward digging for users, jobs, starts, errors,...
- Currently student (Luca) working on interlooping with dCache storage events
- One lesseon: Synthetic emulation of storage killing DDOS jobs not really easy
 - HTCondor+dCache+GPFS in principle pretty stable (apparently users more *creative* then us admins)

Event Flow

DESY. DE T2s & National Analysis Facility

ToDo and Wishlist

Currently grok'ing Daemon Logs

- Machine readable daemon logs ok'ish
- JSON formatted Daemon events might be much easier to parse
- Could daemon logging **push** their "events" as JSONs?

- Aim: traingulate cluster issues to jobs events to storage events etc. pp.
- ToDo at us: integrate adstash job ads with the job events
 - Currently separate corners in ES

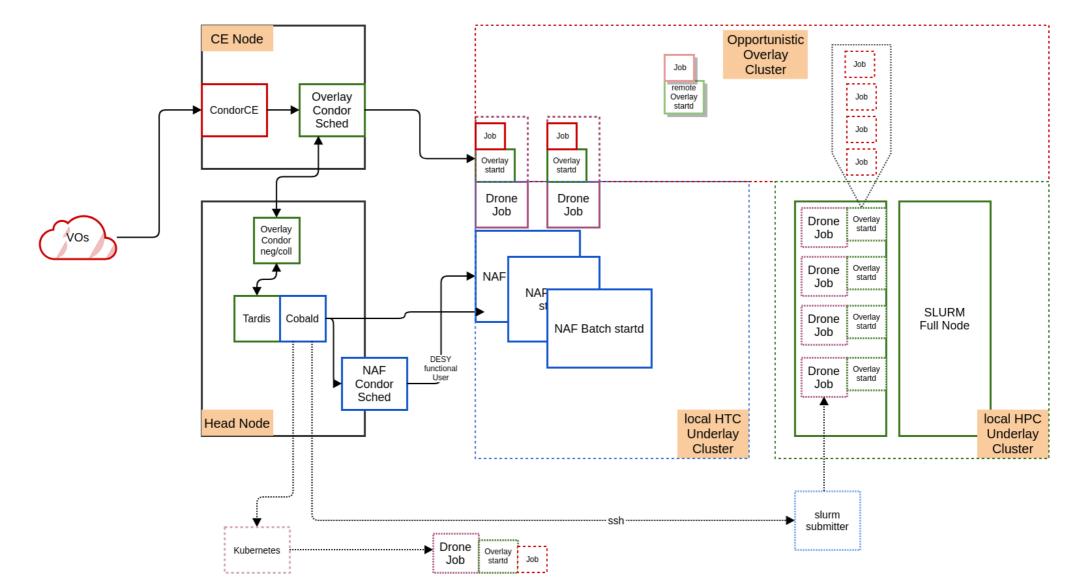
Opportunistic Resources

Overlay Batch System

Backfilling resources

- Participating in PUNCH project
- Cobald/Tardis Overlay HTCondor Cluster
 - startd *drones* in local HTCondor slots (or SLURM, K8s,...)
 - DESY-HH contributing resources

https://cobald-tardis.readthedocs.io/en/latest/



• Long term idea/*proliferation* opportunistic utilization of all the untapped resources nodes in an overlay cluster

Opportunistic Resource Utilization

Dynamic Overlay Cluster ~ Breathing Scale up/down

DESY.

Issues Challenges

Jupyter Notebooks

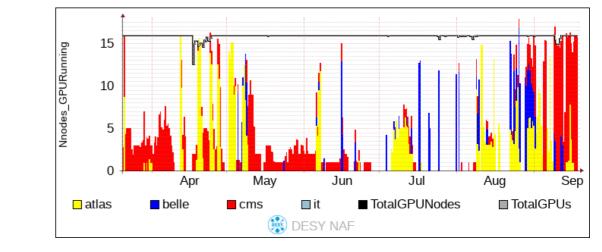
Users becoming more memory hungry

- Jupter hub on the NAF
 - Notebook jobs via dedicated scheduler/negotiator
 - running on dedicated slots
 - Our idea: lightweigt notebooks for day to day work
 - · Worked in the past pretty well
 - Users' idea: load everything(tm) in memory for interactive stuff
 - It's easy and compexity is hidden
 - Had been lenient enforcing mem limits
 - Killing (randomly from the user perspective) notebook jobs not well received...

Jupyter Notebooks

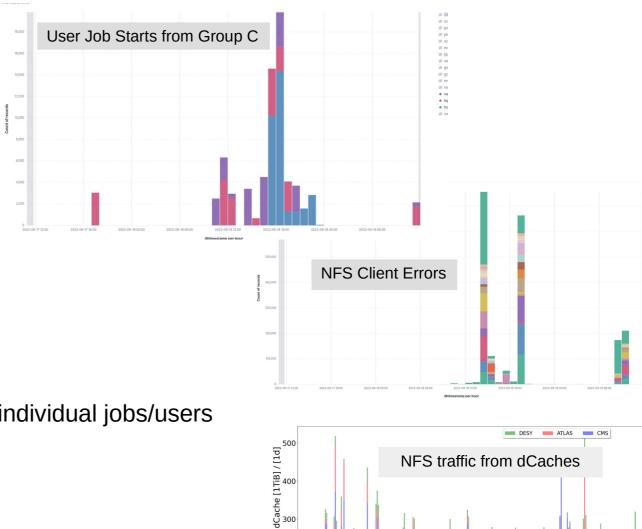
Scale out from Notebooks

- Going for scale out
- Apprentice (Joja) working on htmap and Apache Dask
 - Helper Python lib for users to import
 - · Easy™ scale out functions/data ingress/egress (hopefully)
 - · Spawn jobs onto the cluster from a notebook/job onto the cluster
 - Hiding NAF details
 - Token/ticket renewal
 - · EP with notebook jobs becoming also remote submitters
 - Dedicated Scheduler (+ Negotiator?)
- To be seen how operations look like in the end: myriads of short jobs, I/O hammering,...?



GPU Resources

Brokering *special* **Resources**


- Demand for GPU nodes quite variable
 - User complaints mounted up
 - GPU nodes no special resource in the pool
 - No concurrency limit just nodes with GPU resource to be requested
 - User quota in one bag as with all non-GPU nodes
- Going for separate negotiator for GPU resources in parallel to the general urpose negotiator
 - User quota/history constraint to GPU nodes only
 - Fair sharing the GPU nodes
 - Many thanks to Todd for the suggestion!

Blind to POSIX I/O

Not much progess since last year

- Users can grind storage pools to a hold
 - Users love POSIX/paths NFS/GPFS/...
 - Better monitoring on the storage sides...
 - ...but still blind on the EP
 - Path/POSIX I/O invisible to Condor
 - Triangulating between storage, pools, EP nodes, individual jobs/users
- Everything will get better with more current kernels
 - More easier to tap into the kernel (hopefully)
 - Mid term aim: inject own job events with file handle statistics/details

via

Transferred Data v 00 00

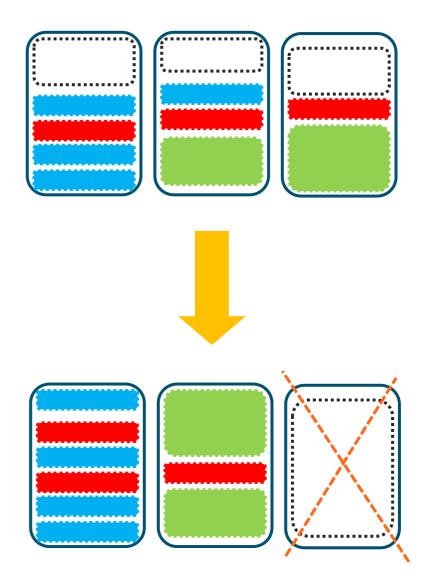
Summary

- Adapting to Energy Challenges
- Adapting to OS Challenges
- Improved our monitoring
 - eBPF could become quite useful (when finally being on a current kernel with all nodes)
 - Job I/O still black whole with hardly any insight
 - Side car motorcycle monitor job ideallly outside user context within the job - startd cron? precmd?
- Ongoing task to making all users equal(ly unhappy)

Appendix

{ "_index": "batch-eventlogs-2023.09.17", "_type": "_doc", "_id": "12PIoooB0tHQslGDWmKT", "_version": 1, "_score": 1, "_source": { "ResidentSetSize": 14971620, "CumulativeRemoteSysCpu": 134, "RemoteUserCpu": 309, "type": "json", "@version": "1", "CpusUsage": 0.999287530459436, "path": "/var/log/condor/EventLog.json", "CumulativeRemoteUserCpu": 309, "JobCurrentStartDate": 1694947239, "BlockWriteKbytes": 700944, "SysProject": "af-belle2", "Size": 28744640, "beat": { "timestamp": "2023-09-17T10:55:53.811Z" }, "DESYAcctGroup": "BIRD_belle", "ClusterId": 40941363, "host": "bird-htc-sched14.desy.de", "NumJobStarts": 1, "Cluster": 40941363, "User": "huwhaigh@desy.de", "RequestCpus": 1, "GlobalJobId": "bird-htc-sched14.desy.de#40941363.150#1694945033", "DiskUsage": 1, "ProcId": 150, "BlockReadKbytes": 285540, "TriggerEventTypeName": "ULOG_IMAGE_SIZE", "Proc": 150, "CpusProvisioned": 1, "Project": "af-belle2", "RemoteSysCpu": 134, "Owner": "huwhaigh", "RemoteWallClockTime": 0, "ExitStatus": 0, "MemoryUsage": 14621, "EventTime": "2023-09-17T12:55:53.518", "@timestamp": "2023-09-17T10:55:53.811Z", "tags": ["multiline", "bird-htc-sched14.desy.de", "/var/log/condor/EventLog.json", "batch-eventlogs", "naf", "naf-lrms", "condor-scheduler", "condor-master", "kafka"], "TriggerEventTypeNumber": 6, "MyType": "JobAdInformationEvent", "Subproc": 0, "EventTypeNumber": 28, "NumShadowStarts": 1 }, "fields": { "Owner": ["huwhaigh"], "NumJobStarts": [1], "TriggerEventTypeNumber": [6], "RemoteUserCpu": [309], "Size": [28744640], "DiskUsage": [1], "type": ["json"], "MyType": ["JobAdInformationEvent"], "ExitStatus": [0], "path": ["/var/log/condor/EventLog.json"], "Subproc": [0], "type.keyword": ["json"], "host": ["bird-htc-sched14.desy.de"], "TriggerEventTypeName.keyword": ["ULOG_IMAGE_SIZE"], "host.keyword": ["bird-htc-sched14.desy.de"], "GlobalJobId": ["bird-htc-sched14.desy.de#40941363.150#1694945033"], "CpusProvisioned": [1], "@version.keyword": ["1"], "Owner.keyword": ["huwhaigh"], "RemoteWallClockTime": [0], "DESYAcctGroup": ["BIRD_belle"], "tags": ["multiline", "bird-htc-sched14.desy.de", "/var/log/condor/EventLog.json", "batch-eventlogs", "naf", "naf-lrms", "condor-scheduler", "condor-master", "kafka"], "CpusUsage": [0.99928755], "Project": ["af-belle2"], "MyType.keyword": ["JobAdInformationEvent"], "EventTypeNumber": [28], "RequestCpus": [1], "SysProject": ["af-belle2"], "EventTime": ["2023-09-17T12:55:53.518Z"], "Project.keyword": ["af-belle2"], "CumulativeRemoteSysCpu": [134], "GlobalJobId.keyword": ["bird-htcsched14.desy.de#40941363.150#1694945033"], "ResidentSetSize": [14971620], "CumulativeRemoteUserCpu": [309], "User": ["huwhaigh@desy.de"], "BlockWriteKbytes": [700944], "tags.keyword": ["multiline", "bird-htc-sched14.desy.de", "/var/log/condor/EventLog.json", "batch-eventlogs", "naf", "naf-lrms", "condor-scheduler", "condor-master", "kafka"], "JobCurrentStartDate": [1694947239], "ProcId": [150], "Proc": [150], "RemoteSysCpu": [134], "TriggerEventTypeName": ["ULOG_IMAGE_SIZE"], "@version": ["1"], "beat.timestamp": ["2023-09-17T10:55:53.811Z"], "DESYAcctGroup.keyword": ["BIRD_belle"], "ClusterId": [40941363], "Cluster": [40941363], "MemoryUsage": [14621], "User.keyword": ["huwhaigh@desy.de"], "@timestamp": ["2023-09-17T10:55:53.811Z"], "SysProject.keyword": ["af-belle2"], "NumShadowStarts": [1], "path.keyword": ["/var/log/condor/EventLog.json"]. "BlockReadKbytes": [285540]}

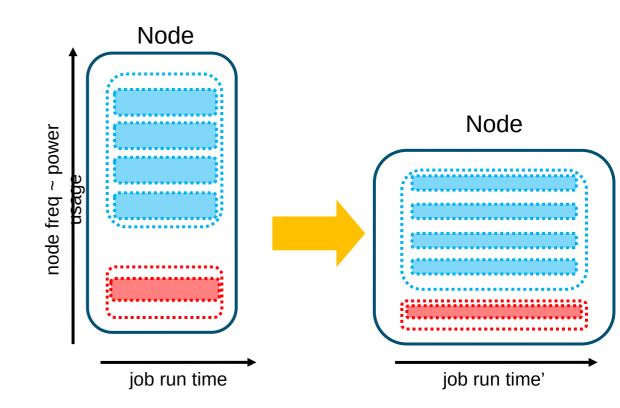
Full Containerized Deployment in the Future?


Thinking out loud

- Has someone already experiences with Podman-based deployents?
- K8s user namespace support still beta (CRIO not full userspace w. mapping possible AFAIS)
- Full userspace/uid mapping should be reasonable with Grid
- NAF has POSIX mounted shared FS'ses (NFS kernel client...)
 - Have to run on root user namespace :(
 - No good idea, how to realize or with what runtime
 - Fully unpriviledged User App Containers in K8s ??

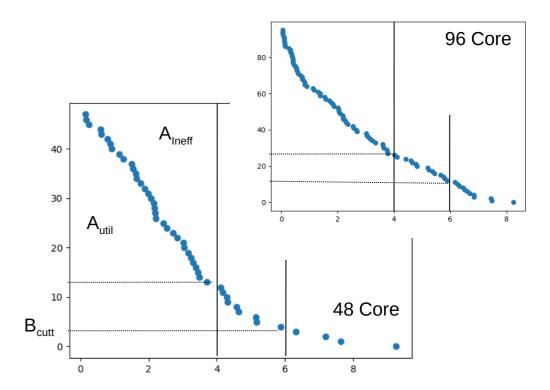
Cluster-wide Power Shaping

Workload dependent Power Saving: Users


- User Clusters with more dynamic utilization
 - Potentially higher job entropy
 - Cluster intrinsic power shaping
 - Horizontal vs. vertical scheduling
 - Cluster compression
 - price: higher job upstart latency/entropy
 - More aggressive node shedding
 - Opportunistic node ramp up with backfill workloads on standby

Power Shaping per Node

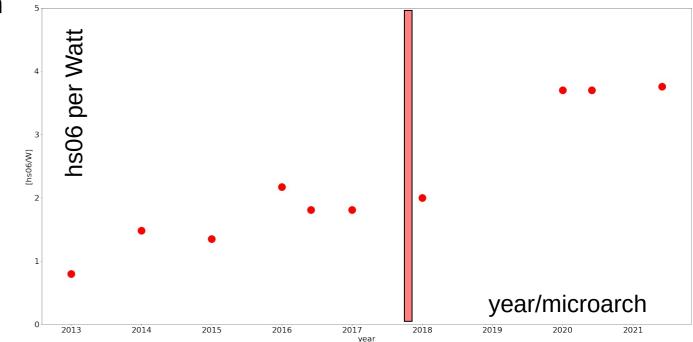
Workload dependent Power Saving: Grid

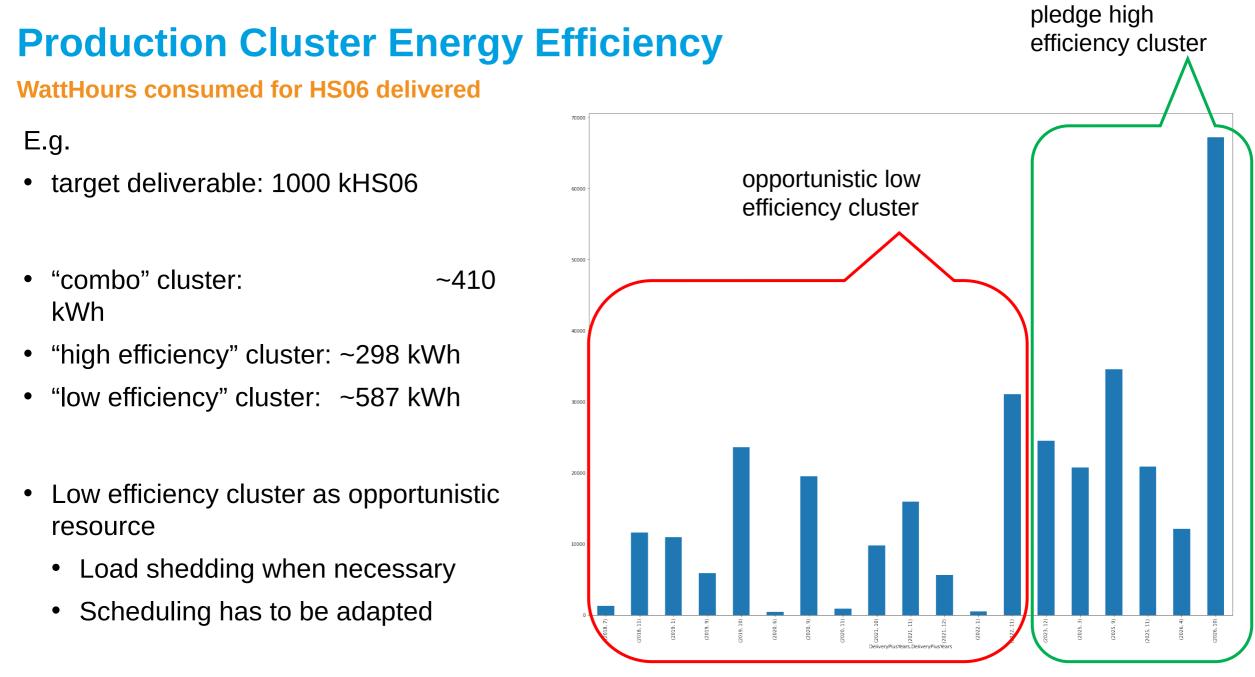

- Power consumption optimization depending on usage patterns
- Production Workload/Cluster
 - Job-Life-Time dependent scheduling difficult (payload run time potentially unknown to pilots)
 - Cluster external power shaping
 - Node/kernel power shaping transparent to payloads
- CPU Governor stepping driven by Green Energy availability

Preemption: Job Shedding minimizing Cycle Waste

User Side Implementation Necessary

- Draining Cluster/Nodes
 - Wasting idle CPU cycles
- Hard Node shedding
 - Wastes all CPU cycles so far of active jobs
- Ideally: Pre-emptable Jobs
 - Grace Period SIGTERM → SIGKILL
 - Snapshot/Stage results so far
 - Requires: User Side Implementation...




Simulation: Node Utilization while Draining

Architecture/Generation Energy Efficiency

CPU Efficiency per Electric Power Consumption

- Significant efficiency gains with recent microarchs (aka Zen)
- CPU compute power per Watt gain ~4x from oldest workers still in production
- Old, energy inefficient nodes as dynamic moderators for shedding/fan out
- Shaping Frequency depending on production job run time/draining rate

Opportunistic Resource Utilization

Utilizing surplus green energy

- Complementary to load shedding
- Node ramp up O(~minutes)
- O(shedding)? Depends on payload runtimes and overall cluster job entropy
- Need interface to weather/green energy pricing forecasts
 - helper HTCondor Daemon with external input for cluster shaping?
- Damping wavelengths by payloads
- How to avoid significant draining idle waste cycles
 - Backfilling short jobs?
 - Assist users implementing preemption?