
HTCSS Vocabulary, Architecture, and

User View

European HTCondor Workshop 2023

Todd Tannenbaum

Center for High Throughput Computing

University of Wisconsin-Madison

HTC = High Throughput Computing

HTCSS = HTCondor Software Suite

What is the HTCSS, what does it do?

• Manages workflows / sets of jobs
for researchers

• Federates and supervises
computing capacity

• Matches the capacity to workflows

• Distributed, highly available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

9/19/2023 3

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 4

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 5

AP

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 6

HTCondor Pool

EP
EP
EP
…

CM

AP

On-Premises

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 7

HTCondor Pool

EP
EP
EP
…

CM

AP

EP
EP
EP
…On-Premises HPC Site

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 8

HTCondor Pool

EP
EP
EP
…

CM

AP

EP
EP
EP
…

CE

On-Premises HPC Site WLCG Site

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 9

HTCondor Pool

EP
EP
EP
…

CM

AP

EP
EP
EP
…

CE

IGWN
CMS

ATLAS

On-Premises HPC Site WLCG Site

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 10

HTCondor Pool

EP
EP
EP
…

CM

AP

EP
EP
EP
…

CE

CMS
ATLAS

EP
EP
EP

On-Premises HPC Site WLCG Site

IGWN

What is the HTCSS, what does it do?
• Manages workflows /

sets of jobs for
researchers

• Federates and
supervises computing
capacity

• Matches the capacity
to workflows

• Distributed, highly
available

HTCSS
provides a
distributed

high-
throughput

batch
computing

environment

• Access Point (AP)

• Directed Acyclic Graph
Manager (DAGMan)

• Execution Point (EP)

• Central Manager (CM)

• Compute Entrypoint (CE)

HTCondor
Suite

Components

9/19/2023 11

HTCondor Pool

EP
EP
EP
…

CM

AP

EP
EP
EP
…

CE

CMS
ATLAS

EP
EP
EP

On-Premises HPC Site WLCG Site

IGWN

"GlideIns"

or

"Pilots"

12

Job Matching and

Class Ad Attributes

13

Class Ads

• HTCondor stores a list of information about

each job and each computer.

• This information is stored as a “Class Ad”

• Class Ads have the format:

AttributeName = value

HTCondor Manual: Appendix A: Class Ad Attributes

can be a boolean,

number, string, or

expression

http://research.cs.wisc.edu/htcondor/manual/v8.5/12_Appendix_A.html

14

• Literals

– Strings (“RedHat6”), integers, floats, boolean (true/false), …

• Expressions

– Similar look to C/C++ or Java : operators, references, functions

– References: to other attributes in the same ad, or attributes in
an ad that is a candidate for a match

– Operators: +, -, *, /, <, <=,>, >=, ==, !=, &&, and || all work as
expected

– Built-in Functions: if/then/else, string manipulation, regular
expression pattern matching, list operations, dates,
randomization, math (ceil, floor, quantize,…), time functions,
eval, …

ClassAd Values

14

14

15
15

AP Job Ad
Type = "Job"

Requirements =

HasMatlabLicense

== True &&

Memory >= 1024

Rank = kflops + 1000000 *

Memory

Cmd= "/bin/sleep"

Args = "3600"

Owner = "gthain"

NumJobStarts = 8

KindOfJob = "simulation"

Department = "Math"

EP Machine Slot Ad
Type = "Machine"

Cpus = 40

Memory = 2048

Requirements =

(Owner == “gthain”) ||

(KindOfJob == “simulation”)

Rank = Department == "Math"

HasMatlabLicense = true

MaxTries = 4

kflops = 41403

ClassAd Examples

16

Job Matching

• On a regular basis, the central manager
reviews Job resource requests from APs and
matches them to EP Slot ads.

AP Jobs
EP

EP

EP

central manager

17

Job Execution

• (Then the AP and EP points communicate directly.)

AP
EP

EP

EP

central manager

Architecture &

Job Startup

AP Core Process View

19

condor_master

(pid: 1740)

condor_schedd

condor_shadow condor_shadow condor_shadow

fork/exec

fork/exec

condor_procd

Tools: condor_submit, condor_q,

condor_rm, condor_hold, …

condor_shared_port

EP Core Process View

20

condor_master

(pid: 1740)

condor_startd

condor_starter condor_starter condor_starter

fork/exec

Job Job Job

condor_procd

condor_shared_port

Central Manager Process View

21

condor_master

(pid: 1740)

condor_collector

fork/exec

condor_negotiator

condor_procd

condor_shared_port

22

Claiming Protocol

22

EPAP

Submit

Schedd Startd

Central Manager

CollectorNegotiator

U

J

S

U

S

J

J S

J SCLAIM

23

Claim Activation

23

EPAP

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate

Claim
Starter

24

Repeat until Claim released

24

EPAP

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate

Claim
Starter

25

Repeat until Claim released

25

EPAP

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate

Claim
Starter

26

Running a Job with HTCondor

27

Jobs

• A single computing task is called a “job”

• Three main pieces of a job are the input,

executable (program) and output

• Executable must be runnable from the

command line without any interactive input

28

Job Example

• For our example, we will be using an

imaginary program called

“compare_states”, which compares two

data files and produces a single output file.

wi.dat

compare_

states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

29

File Transfer

• What about files? Can use a shared file system,
chirp, or file transfer mechanism.

• Our example will use HTCondor’s file transfer :

Submit Execute

(submit_dir)/

input files

executable

(execute_dir)/

output files

30

Job Translation

• Submit file: communicates everything about your job(s) to

the HTCondor Access Point

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

31

Submit File

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

32

Submit File

• List your
executable and
any arguments it
takes.

• Arguments are
any options
passed to the
executable from
the command line.

compare_

states

$ compare_states wi.dat us.dat wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

33

Submit File

• Indicate

your input

files.

wi.dat

us.dat

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

34

Submit File

• HTCondor will

transfer back

all new and

changed files

(usually

output) from

the job.

wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

35

Submit File

• log: file

created by

HTCondor to

track job

progress

• output/err

or: captures

stdout and

stderr

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

36

Submit File

• Request the
appropriate
resources
for your job
to run.

• queue:
keyword
indicating
“create a
job.”

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

37

Resource Request

• Jobs are nearly always using a part of a computer, not the

whole thing. EP divides worker node into execute "Slots".

• Very important to request appropriate resources (memory,

cpus, disk) for a job

whole

computer

your request

38

Submitting and Monitoring

• To submit a job/jobs:

condor_submit submit_file_name

• To monitor submitted jobs, use:

condor_q

$ condor_submit job.submit

Submitting job(s).

1 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

HTCondor Manual: condor_q

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

39

More about condor_q

• By default condor_q shows:

– user’s job only

• See everyone with "condor_q –allusers"

– jobs summarized in “batches”

• Constrain with username, ClusterId or full

JobId, which will be denoted[U/C/J] in the

following slides
$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId

40

More about condor_q

• To see individual job information, use:

condor_q -nobatch

• We will use the -nobatch option in the

following slides to see extra detail about

what is happening with a job

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

41

Job Idle

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

42

Job Starts by doing File Transfer

compare_states

wi.dat

us.dat

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

(execute_dir)/

Execute Node

43

Job Running

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

Execute Node

44

Job Completes

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

stderr

stdout

wi.dat.out

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Execute Node

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

45

Job Completes (cont.)

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

wi.dat.out

Submit Node

46

Job Event Log File

000 (128.000.000) 05/09 11:09:08 Job submitted from host:

<128.104.101.92&sock=6423_b881_3>

...

001 (128.000.000) 05/09 11:10:46 Job executing on host:

<128.104.101.128:9618&sock=5053_3126_3>

...

006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)

220 - ResidentSetSize of job (KB)

...

005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job

33 - Run Bytes Received By Job

0 - Total Bytes Sent By Job

33 - Total Bytes Received By Job

Partitionable Resources : Usage Request Allocated

Cpus : 1 1 1

Disk (KB) : 14 20480 17203728

Memory (MB) : 1 20 20

47

Job States

Idle

(I)

Running

(R)

Completed

(C)

condor_

submit

Held

(H)

Removed

(X)

condor_rm

condor_hold,

or job error
condor_release

in the queue leaving the queue

48

Reviewing Completed Jobs

• To review completed jobs, use condor_history
As condor_q is to the present, condor_history is to the past

$ condor_history alice

ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD

189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice

189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice

189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice

189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice

189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice

189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice

189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice

189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice

189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice

189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice

189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html

49

Submitting Multiple Jobs

with HTCondor

50

Many Jobs, One Submit File

• HTCondor has built-in ways to submit

multiple independent jobs with one submit

file

51

Advantages

• Run many independent jobs...

– analyze multiple data files

– test parameter or input combinations

– and more!

• ...without having to:

– start each job individually

– create separate submit files for each job

52

Multiple, Numbered, Input Files

• Goal: create 3 jobs that each analyze a

different input file.

executable = analyze.exe

arguments = file.in file.out

transfer_input_files = file.in

log = job.log

output = job.out

error = job.err

queue

job.submit

analyze.exe

file0.in

file1.in

file2.in

job.submit

(submit_dir)/

53

Multiple Jobs, No Variation

• This file generates 3 jobs, but doesn’t use

multiple inputs and will overwrite outputs

analyze.exe

file0.in

file1.in

file2.in

job.submit

(submit_dir)/
executable = analyze.exe

arguments = file0.in file0.out

transfer_input_files = file.in

log = job.log

output = job.out

error = job.err

queue 3

job.submit

54

Automatic Variables

• Each job’s
ClusterId and
ProcId numbers
are saved as job
attributes

• They can be
accessed inside
the submit file
using:
– $(ClusterId)

– $(ProcId)

queue N

128

128

128

0

1

2

ClusterId ProcId

...

128 N-1

...

55

Separate Jobs with InitialDir

executable = analyze.exe

initialdir = job$(ProcId)

arguments = file.in file.out

transfer_input_files = file.in

log = job.log

error = job.err

queue 3

job.submit

analyze.exe

job0/

file.in

job.log

job.err

file.out

job1/

file.in

job.log

job.err

file.out

job2/

file.in

job.log

job.err

file.out

job.submit

(submit_dir)/

56

Other Submission Methods

• What if your input files/directories aren’t numbered from 0

- (N-1)?

• There are other ways to submit many jobs!

57

matching ...

pattern

in ... list

from ... file

Possible Queue Statements

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat

ca.dat

ia.dat

state_list.txt

… or use the HTCSS Python API!

58

Using Multiple Variables

• Both the “from” and “in” syntax support using multiple

variables from a list.

executable = compare_states

arguments = -year $(option) –input $(file)

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

transfer_input_files = $(file)

queue file,option from job_list.txt

wi.dat, 2010

wi.dat, 2015

ca.dat, 2010

ca.dat, 2015

ia.dat, 2010

ia.dat, 2015

job.submit job_list.txt

HTCondor Manual: submit file options

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#SECTION0012564000000000000000

59

Class Ads for Users

• Class Ads also provide lots of useful information about

jobs, slots, and daemons to HTCondor users and

administrators

60

Finding Job Attributes

$ condor_q -l 128.0

WhenToTransferOutput = "ON_EXIT"

TargetType = "Machine"

Cmd = "/home/alice/tests/htcondor_week/compare_states"

JobUniverse = 5

Iwd = "/home/alice/tests/htcondor_week"

RequestDisk = 20480

NumJobStarts = 0

WantRemoteIO = true

OnExitRemove = true

TransferInput = "us.dat,wi.dat"

MyType = "Job”

UserLog = "/home/alice/tests/htcondor_week/job.log"

RequestMemory = 20

...

• Use the “long” option for condor_q
condor_q -l JobId

61

Some Useful Job Attributes

• UserLog: location of job log

• Iwd: Initial Working Directory (i.e.

submission directory) on submit node

• MemoryUsage: maximum memory the job

has used

• RemoteHost: where the job is running

• BatchName: attribute to label job batches

• ...and more

62

Selectively display specific attributes

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

17315225 116 slot1_1@e092.chtc.wisc.edu 1709

17315225 118 slot1_2@e093.chtc.wisc.edu 1709

17315225 137 slot1_8@e125.chtc.wisc.edu 1709

17315225 139 slot1_7@e121.chtc.wisc.edu 1709

18050961 0 slot1_5@c025.chtc.wisc.edu 196

18050963 0 slot1_3@atlas10.chtc.wisc.edu 269

18050964 0 slot1_25@e348.chtc.wisc.edu 245

18050965 0 slot1_23@e305.chtc.wisc.edu 196

18050971 0 slot1_6@e176.chtc.wisc.edu 220

• Use the “auto-format” option:
condor_q [U/C/J] -af Attribute1 Attribute2 ...

63

Other Displays

• See the whole queue (all users, all jobs)

condor_q -all

$ condor_q -all

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

alice DAG: 128 5/9 02:52 982 2 _ _ 1000 18888976.0 ...

bob DAG: 139 5/9 09:21 _ 1 89 _ 180 18910071.0 ...

alice DAG: 219 5/9 10:31 1 997 2 _ 1000 18911030.0 ...

bob DAG: 226 5/9 10:51 10 _ 1 _ 44 18913051.0

bob CMD: ce.sh 5/9 10:55 _ _ _ 2 _ 18913029.0 ...

alice CMD: sb 5/9 10:57 _ 2 998 _ _ 18913030.0-999

64

Query the Collector: Class Ads from EPs

as condor_q is to jobs, condor_status is to EP Slots (or “machines”)

$ condor_status

Name OpSys Arch State Activity LoadAv Mem Actvty

slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.000 673 25+01

slot1_1@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slot1_2@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slot1_3@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+00

slot1_4@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+14

slot1_5@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 1024 0+01

slot1@c002.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 1.000 2693 19+19

slot1_1@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+04

slot1_2@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slot1_3@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 0.990 2048 0+02

slot1@c004.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.010 645 25+05

slot1_1@c004.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 10962 0 10340 613 0 0 0 9

X86_64/WINDOWS 2 2 0 0 0 0 0 0

Total 10964 2 10340 613 0 0 0 9

HTCondor Manual: condor_status

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_status.html

65

Machine Attributes

$ condor_status -l slot1_1@c001.chtc.wisc.edu

HasFileTransfer = true

COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”

TargetType = "Job”

TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu

UtsnameNodename = ""

Mips = 17902

MAX_PREEMPT = (3600 * (72 - 68 * (WantGlidein =?= true)))

Requirements = (START) && (IsValidCheckpointPlatform) && (

WithinResourceLimits)

State = "Claimed"

OpSysMajorVer = 6

OpSysName = "SL”

...

• Use same options as condor_q:
condor_status -l Slot/Machine

condor_status [Machine] -af Attribute1 Attribute2 ...

66

Machine Attributes

$ condor_q -compact

Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST

e007.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.00 1.24 Cb

e008.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.46 0.97 Cb

e009.chtc.wisc.edu x64/SL6 11 16 23.46 5 0.00 0.81 **

e010.chtc.wisc.edu x64/SL6 8 8 23.46 0 4.46 0.76 Cb

matlab-build-1.chtc.wisc.edu x64/SL6 1 12 23.45 11 13.45 0.00 **

matlab-build-5.chtc.wisc.edu x64/SL6 0 24 23.45 24 23.45 0.04 Ui

mem1.chtc.wisc.edu x64/SL6 24 80 1009.67 8 0.17 0.60 **

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

x64/SL6 10416 0 9984 427 0 0 0 5

x64/WinVista 2 2 0 0 0 0 0 0

Total 10418 2 9984 427 0 0 0 5

• To summarize, use the “-compact” option
condor_status -compact

67

Job Universes

• HTCondor has different “universes” for

running specialized job types
HTCondor Manual: Choosing an HTCondor Universe

• Vanilla (default)

– good for most software
HTCondor Manual: Vanilla Universe

• Set in the submit

file using:

universe =

vanilla

http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341200000000000000

68

Other Universes

• Local
– Run jobs on the submit node

• Container
– Runs jobs inside a container

– Container image can be specified

by user or by admin

• Grid
– Delegate jobs to another

scheduler (e.g. SLURM, PBS, …)

– The basis for HTCondor-CE

69

Other (Less Popular) Universes

• VM

– Run jobs inside a virtual machine

• Parallel

– Used for coordinating jobs across multiple

servers (e.g. MPI code)

– Not necessary for single server multi-core

jobs

70

Typical User Command-Line Tools

• condor_submit Submit new Jobs
• condor_status View Ads in the Collector (e.g. EP Slots)
• condor_q View Jobs at an AP
• condor_q -analyze Why job/machines fail to match?
• condor_ssh_to_job Create ssh session to active job
• condor_submit -i Submit interactive job
• condor_hold / release Hold a job, or release a held job
• condor_run Submit and block
• condor_rm Remove Jobs
• condor_prio Intra-User Job Prios
• condor_history Completed Job Info
• condor_submit_dag Submit new DAG workflow
• condor_chirp Access files/ad from active job

71

Describing Workflows with

DAGMan

72

Workflows

• Problem: Want to submit

jobs in a particular order,

with dependencies

between groups of jobs

• Solution: Write a DAG

split

1 2 3 N

combine

...

download

73

DAG = ”directed acyclic graph”

• topological ordering of
vertices (“nodes”) is
established by directional
connections (“edges”)

• “acyclic” aspect requires
a start and end, with no
looped repetition

– can contain cyclic
subcomponents, covered
in later slides for
workflows

wikipedia.org/wiki/Directed_acyclic_graph

Wikimedia Commons

https://en.wikipedia.org/wiki/Directed_acyclic_graph

74

DAGMan in the HTCondor Manual

75

...

Simple Example for this Tutorial

B1 B2 B3 BN

A

C

HTCondor Manual: DAGMan Applications > DAG Input File

• The DAG input file will

communicate the

“nodes” and directional

“edges” of the DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

76

Basic DAG input file:

JOB nodes, PARENT-CHILD edges

JOB A A.sub

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C• Node names are used by various
DAG features to modify their
execution by DAG Manager.

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

77

Endless Workflow Possibilities

Wikimedia Commons

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

78

Endless Workflow Possibilities

https://confluence.pegasus.isi.edu

79

Submitting and Monitoring a

DAGMan Workflow

80

Basic DAG input file:

JOB nodes, PARENT-CHILD edges

JOB A A.sub

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

81

Submitting a DAG to the queue

• Submission command:

condor_submit_dag dag_file

$ condor_submit_dag my.dag

--

File for submitting this DAG to HTCondor : mydag.dag.condor.sub

Log of DAGMan debugging messages : mydag.dag.dagman.out

Log of HTCondor library output : mydag.dag.lib.out

Log of HTCondor library error messages : mydag.dag.lib.err

Log of the life of condor_dagman itself : mydag.dag.dagman.log

Submitting job(s).

1 job(s) submitted to cluster 87274940.

--

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

82

Jobs are automatically submitted by the

DAGMan job

• Seconds later, node A is submitted:

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 18:08 _ _ 1 5 129.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:00:36 R 0 0.3 condor_dagman

129.0 alice 4/30 18:08 0+00:00:00 I 0 0.3 A_split.sh

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

83

Jobs are automatically submitted by the

DAGMan job

• After A completes, B1-3 are submitted

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 8:08 1 _ 3 5 129.0...132.0

4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman

130.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

131.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

132.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

84

Jobs are automatically submitted by the

DAGMan job

• After B1-3 complete, node C is submitted

HTCondor Manual: DAGMan > DAG Submission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 8:08 4 _ 1 5 129.0...133.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:46:36 R 0 0.3 condor_dagman

133.0 alice 4/30 18:54 0+00:00:00 I 0 0.3 C_combine.sh

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

85

Removing a DAG from the queue

• Remove the DAGMan job in order to stop and remove

the entire DAG:

condor_rm dagman_jobID

• Creates a rescue file so that only incomplete or

unsuccessful NODES are repeated upon resubmission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_rm 128
All jobs in cluster 128 have been marked for removal

DAGMan > DAG Monitoring and DAG Removal
DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003107000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000

86

Rescue Files For Resuming a Failed DAG

• A rescue file is created when:

– a node fails, and after DAGMan advances
through any other possible nodes

– the DAG is removed from the queue
(or aborted; covered later)

– the DAG is halted and not unhalted

• Resubmission uses the rescue file (if it
exists) when the original DAG file is
resubmitted
– override: condor_submit_dag dag_file -f

DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000

87

PRE and POST scripts run on the

submit server, as part of the node

JOB A A.sub

SCRIPT POST A sort.sh

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

SCRIPT PRE C tar_it.sh

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C

PRE script

POST script

• Use sparingly for lightweight work;

otherwise include work in node jobs

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

88

RETRY failed nodes to overcome

transient errors

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• Retry a node up to N times if the exit code is
non-zero:

RETRY node_name N

• See also: retry except for a particular exit code
(UNLESS-EXIT), or retry scripts (DEFER)

• Note: Unnecessary for nodes (jobs) that can use
max_retries in the submit file

JOB A A.sub

RETRY A 5

JOB B B.sub

PARENT A CHILD B

Example:

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109100000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102400000000000000

89

RETRY applies to whole node,

including PRE/POST scripts

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• PRE and POST scripts are included in retries

• RETRY of a node with a POST script uses the

exit code from the POST script (not from the job)

– POST script can do more to determine node success,

perhaps by examining JOB output

SCRIPT PRE A download.sh

JOB A A.sub

SCRIPT POST A checkA.sh

RETRY A 5

Example:

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109100000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102400000000000000

90

Modular Organization and Control of DAG

Components

• Splices and SubDags

• Node Throttling

• Node Priorities

• Lots more in the Manual…

Thank you!

Questions?

Join us on the htcondor-users email list!

https://htcondor.org/mail-lists/#user

91

This work is supported by NSF under Cooperative Agreement OAC-2030508 as part of the PATh

Project. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the NSF

https://htcondor.org/mail-lists/#user
https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030508
https://path-cc.io/

