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HTC = High Throughput Computing

HTCSS = HTCondor Software Suite
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Job Matching and 

Class Ad Attributes



13

Class Ads

• HTCondor stores a list of information about 

each job and each computer. 

• This information is stored as a “Class Ad”

• Class Ads have the format: 

AttributeName = value

HTCondor Manual: Appendix A: Class Ad Attributes

can be a boolean, 

number, string, or 

expression

http://research.cs.wisc.edu/htcondor/manual/v8.5/12_Appendix_A.html
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• Literals

– Strings ( “RedHat6” ), integers, floats, boolean (true/false), …

• Expressions

– Similar look to C/C++ or Java : operators, references, functions

– References: to other attributes in the same ad, or attributes in 
an ad that is a candidate for a match

– Operators: +, -, *, /, <, <=,>, >=, ==, !=, &&, and || all work as 
expected

– Built-in Functions: if/then/else, string manipulation, regular 
expression pattern matching, list operations, dates, 
randomization, math (ceil, floor, quantize,…), time functions, 
eval, …

ClassAd Values

14

14
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AP Job Ad
Type  = "Job"

Requirements = 

HasMatlabLicense

== True &&

Memory >= 1024

Rank = kflops + 1000000 * 

Memory

Cmd= "/bin/sleep"

Args = "3600"

Owner = "gthain"

NumJobStarts = 8

KindOfJob = "simulation"

Department = "Math"

EP Machine Slot Ad
Type = "Machine"

Cpus = 40

Memory = 2048

Requirements =

(Owner == “gthain”)  ||

(KindOfJob == “simulation”)

Rank = Department == "Math"

HasMatlabLicense = true

MaxTries = 4

kflops = 41403

ClassAd Examples
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Job Matching

• On a regular basis, the central manager 
reviews Job resource requests from APs and 
matches them to EP Slot ads.

AP Jobs
EP

EP

EP

central manager
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Job Execution

• (Then the AP and EP points communicate directly.)

AP
EP

EP

EP

central manager



Architecture & 

Job Startup



AP Core Process View
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condor_master

(pid: 1740)

condor_schedd

condor_shadow condor_shadow condor_shadow

fork/exec

fork/exec

condor_procd

Tools: condor_submit, condor_q,

condor_rm, condor_hold, …

condor_shared_port



EP Core Process View
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condor_master

(pid: 1740)

condor_startd

condor_starter condor_starter condor_starter

fork/exec

Job Job Job

condor_procd

condor_shared_port



Central Manager Process View
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condor_master

(pid: 1740)

condor_collector

fork/exec

condor_negotiator

condor_procd

condor_shared_port
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Claiming Protocol

22

EPAP

Submit

Schedd Startd

Central Manager

CollectorNegotiator

U

J

S

U

S

J

J S

J SCLAIM
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Claim Activation

23

EPAP

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate

Claim
Starter
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Repeat until Claim released
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Central Manager
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Repeat until Claim released

25

EPAP

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate

Claim
Starter
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Running a Job with HTCondor
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Jobs

• A single computing task is called a “job”

• Three main pieces of a job are the input, 

executable (program) and output

• Executable must be runnable from the 

command line without any interactive input
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Job Example

• For our example, we will be using an 

imaginary program called 

“compare_states”, which compares two 

data files and produces a single output file.

wi.dat

compare_

states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out
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File Transfer

• What about files? Can use a shared file system, 
chirp, or file transfer mechanism.

• Our example will use HTCondor’s file transfer : 

Submit Execute

(submit_dir)/

input files 

executable

(execute_dir)/

output files



30

Job Translation

• Submit file: communicates everything about your job(s) to 

the HTCondor Access Point

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1
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Submit File

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• List your 
executable and 
any arguments it 
takes.

• Arguments are  
any options 
passed to the 
executable from 
the command line.

compare_

states

$ compare_states wi.dat us.dat wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• Indicate 

your input 

files.

wi.dat

us.dat

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• HTCondor will 

transfer back 

all new and 

changed files 

(usually 

output) from 

the job.

wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit



35

Submit File

• log: file 

created by 

HTCondor to 

track job 

progress

• output/err

or: captures 

stdout and 

stderr

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit
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Submit File

• Request the 
appropriate 
resources 
for your job 
to run.

• queue: 
keyword 
indicating 
“create a 
job.”

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit



37

Resource Request

• Jobs are nearly always using a part of a computer, not the 

whole thing.  EP divides worker node into execute "Slots".

• Very important to request appropriate resources (memory, 

cpus, disk) for a job

whole 

computer

your request



38

Submitting and Monitoring

• To submit a job/jobs:

condor_submit submit_file_name

• To monitor submitted jobs, use: 

condor_q

$ condor_submit job.submit

Submitting job(s).

1 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER  BATCH_NAME             SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS

alice  CMD: compare_states   5/9  11:05      _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

HTCondor Manual: condor_q

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html
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More about condor_q

• By default condor_q shows:

– user’s job only

• See everyone with "condor_q –allusers"

– jobs summarized in “batches”

• Constrain with username, ClusterId or full 

JobId, which will be denoted[U/C/J] in the 

following slides
$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER  BATCH_NAME             SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS

alice  CMD: compare_states   5/9  11:05      _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId
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More about condor_q

• To see individual job information, use:

condor_q -nobatch

• We will use the -nobatch option in the 

following slides to see extra detail about 

what is happening with a job

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 I  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended
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Job Idle

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 I  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node
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Job Starts by doing File Transfer

compare_states

wi.dat

us.dat

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 <  0    0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

(execute_dir)/

Execute Node
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Job Running

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER       SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:01:08 R  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

Execute Node
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Job Completes

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

stderr

stdout

wi.dat.out

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128          alice 5/9  11:09   0+00:02:02 >  0    0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Execute Node

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node
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Job Completes (cont.)

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID      OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

wi.dat.out

Submit Node
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Job Event Log File

000 (128.000.000) 05/09 11:09:08 Job submitted from host: 

<128.104.101.92&sock=6423_b881_3>

...

001 (128.000.000) 05/09 11:10:46 Job executing on host: 

<128.104.101.128:9618&sock=5053_3126_3>

...

006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1  - MemoryUsage of job (MB)

220  - ResidentSetSize of job (KB)

...

005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00  - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00  - Run Local Usage

Usr 0 00:00:00, Sys 0 00:00:00  - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00  - Total Local Usage

0  - Run Bytes Sent By Job

33  - Run Bytes Received By Job

0  - Total Bytes Sent By Job

33  - Total Bytes Received By Job

Partitionable Resources :    Usage  Request Allocated

Cpus                 :        1 1         1

Disk (KB)            :       14    20480  17203728

Memory (MB)          :        1       20        20
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Job States

Idle 

(I)

Running 

(R)

Completed

(C)

condor_

submit

Held

(H)

Removed

(X)

condor_rm

condor_hold, 

or job error
condor_release

in the queue leaving the queue
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Reviewing Completed Jobs

• To review completed jobs, use condor_history
As condor_q is to the  present, condor_history is to the past

$ condor_history alice

ID      OWNER    SUBMITTED   RUN_TIME    ST  COMPLETED   CMD 

189.1012 alice 5/11 09:52   0+00:07:37 C   5/11 16:00 /home/alice

189.1002 alice 5/11 09:52   0+00:08:03 C   5/11 16:00 /home/alice

189.1081 alice 5/11 09:52   0+00:03:16 C   5/11 16:00 /home/alice

189.944  alice 5/11 09:52   0+00:11:15 C   5/11 16:00 /home/alice

189.659  alice 5/11 09:52   0+00:26:56 C   5/11 16:00 /home/alice

189.653  alice 5/11 09:52   0+00:27:07 C   5/11 16:00 /home/alice

189.1040 alice 5/11 09:52   0+00:05:15 C   5/11 15:59 /home/alice

189.1003 alice 5/11 09:52   0+00:07:38 C   5/11 15:59 /home/alice

189.962  alice 5/11 09:52   0+00:09:36 C   5/11 15:59 /home/alice

189.961  alice 5/11 09:52   0+00:09:43 C   5/11 15:59 /home/alice

189.898  alice 5/11 09:52   0+00:13:47 C   5/11 15:59 /home/alice

HTCondor Manual: condor_history

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html
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Submitting Multiple Jobs

with HTCondor
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Many Jobs, One Submit File

• HTCondor has built-in ways to submit 

multiple independent jobs with one submit 

file
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Advantages

• Run many independent jobs...

– analyze multiple data files

– test parameter or input combinations

– and more!

• ...without having to: 

– start each job individually

– create separate submit files for each job
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Multiple, Numbered, Input Files

• Goal: create 3 jobs that each analyze a 

different input file.  

executable = analyze.exe

arguments = file.in file.out

transfer_input_files = file.in

log = job.log

output = job.out

error = job.err

queue

job.submit

analyze.exe

file0.in

file1.in

file2.in

job.submit

(submit_dir)/
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Multiple Jobs, No Variation

• This file generates 3 jobs, but doesn’t use 

multiple inputs and will overwrite outputs

analyze.exe

file0.in

file1.in

file2.in

job.submit

(submit_dir)/
executable = analyze.exe

arguments = file0.in file0.out

transfer_input_files = file.in

log = job.log

output = job.out

error = job.err

queue 3

job.submit
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Automatic Variables

• Each job’s 
ClusterId and 
ProcId numbers 
are saved as job 
attributes 

• They can be 
accessed inside 
the submit file 
using:
– $(ClusterId)

– $(ProcId)

queue N

128

128

128

0

1

2

ClusterId ProcId

...

128 N-1

...
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Separate Jobs with InitialDir

executable = analyze.exe

initialdir = job$(ProcId)

arguments = file.in file.out

transfer_input_files = file.in

log = job.log

error = job.err

queue 3

job.submit

analyze.exe

job0/

file.in

job.log

job.err

file.out

job1/

file.in

job.log

job.err

file.out

job2/

file.in

job.log

job.err

file.out

job.submit

(submit_dir)/
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Other Submission Methods

• What if your input files/directories aren’t numbered from 0 

- (N-1)?  

• There are other ways to submit many jobs!
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matching ... 

pattern

in ... list

from ... file

Possible Queue Statements

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat

ca.dat

ia.dat

state_list.txt

… or use the HTCSS Python API!



58

Using Multiple Variables

• Both the “from” and “in” syntax support using multiple 

variables from a list.

executable = compare_states

arguments = -year $(option) –input $(file)

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

transfer_input_files = $(file)

queue file,option from job_list.txt

wi.dat, 2010

wi.dat, 2015

ca.dat, 2010

ca.dat, 2015

ia.dat, 2010

ia.dat, 2015

job.submit job_list.txt

HTCondor Manual: submit file options

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#SECTION0012564000000000000000
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Class Ads for Users

• Class Ads also provide lots of useful information about 

jobs, slots, and daemons to HTCondor users and 

administrators
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Finding Job Attributes

$ condor_q -l 128.0

WhenToTransferOutput = "ON_EXIT"

TargetType = "Machine"

Cmd = "/home/alice/tests/htcondor_week/compare_states"

JobUniverse = 5

Iwd = "/home/alice/tests/htcondor_week"

RequestDisk = 20480

NumJobStarts = 0

WantRemoteIO = true

OnExitRemove = true

TransferInput = "us.dat,wi.dat"

MyType = "Job”

UserLog = "/home/alice/tests/htcondor_week/job.log"

RequestMemory = 20

...

• Use the “long” option for condor_q
condor_q -l JobId
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Some Useful Job Attributes

• UserLog: location of job log

• Iwd: Initial Working Directory (i.e. 

submission directory) on submit node

• MemoryUsage: maximum memory the job 

has used 

• RemoteHost: where the job is running

• BatchName: attribute to label job batches

• ...and more
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Selectively display specific attributes

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

17315225 116 slot1_1@e092.chtc.wisc.edu 1709

17315225 118 slot1_2@e093.chtc.wisc.edu 1709

17315225 137 slot1_8@e125.chtc.wisc.edu 1709

17315225 139 slot1_7@e121.chtc.wisc.edu 1709

18050961 0 slot1_5@c025.chtc.wisc.edu 196

18050963 0 slot1_3@atlas10.chtc.wisc.edu 269

18050964 0 slot1_25@e348.chtc.wisc.edu 245

18050965 0 slot1_23@e305.chtc.wisc.edu 196

18050971 0 slot1_6@e176.chtc.wisc.edu 220

• Use the “auto-format” option:
condor_q [U/C/J] -af Attribute1 Attribute2 ...
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Other Displays

• See the whole queue (all users, all jobs)

condor_q -all

$ condor_q -all

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

OWNER    BATCH_NAME   SUBMITTED   DONE   RUN    IDLE   HOLD  TOTAL JOB_IDS

alice DAG: 128     5/9  02:52    982      2      _      _   1000 18888976.0 ...

bob DAG: 139     5/9  09:21      _      1     89      _    180 18910071.0 ...

alice DAG: 219     5/9  10:31      1    997      2      _   1000 18911030.0 ...

bob DAG: 226     5/9  10:51     10      _      1      _     44 18913051.0

bob CMD: ce.sh 5/9  10:55      _      _      _      2      _ 18913029.0 ...

alice CMD: sb 5/9  10:57      _      2    998      _      _ 18913030.0-999
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Query the Collector: Class Ads from EPs

as condor_q is to jobs, condor_status is to EP Slots (or “machines”)

$ condor_status

Name OpSys Arch State Activity LoadAv Mem Actvty

slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle      0.000     673 25+01

slot1_1@c001.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    2048  0+01

slot1_2@c001.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    2048  0+01

slot1_3@c001.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    2048  0+00

slot1_4@c001.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    2048  0+14

slot1_5@c001.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    1024  0+01

slot1@c002.chtc.wisc.edu             LINUX      X86_64 Unclaimed Idle      1.000    2693 19+19

slot1_1@c002.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    2048  0+04

slot1_2@c002.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    2048  0+01

slot1_3@c002.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 0.990    2048  0+02

slot1@c004.chtc.wisc.edu             LINUX      X86_64 Unclaimed Idle      0.010     645 25+05

slot1_1@c004.chtc.wisc.edu           LINUX      X86_64 Claimed Busy 1.000    2048  0+01

Total Owner Claimed Unclaimed Matched Preempting Backfill  Drain

X86_64/LINUX 10962     0   10340       613       0          0        0      9

X86_64/WINDOWS     2     2       0         0       0          0        0      0

Total 10964     2   10340       613       0          0        0      9

HTCondor Manual: condor_status

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_status.html
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Machine Attributes

$ condor_status -l slot1_1@c001.chtc.wisc.edu

HasFileTransfer = true

COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”

TargetType = "Job”

TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu

UtsnameNodename = ""

Mips = 17902

MAX_PREEMPT = ( 3600 * ( 72 - 68 * ( WantGlidein =?= true ) ) )

Requirements = ( START ) && ( IsValidCheckpointPlatform ) && ( 

WithinResourceLimits )

State = "Claimed"

OpSysMajorVer = 6

OpSysName = "SL”

...

• Use same options as condor_q:
condor_status -l Slot/Machine

condor_status [Machine] -af Attribute1 Attribute2 ...
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Machine Attributes

$ condor_q -compact

Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST

e007.chtc.wisc.edu           x64/SL6          8    8         23.46      0     0.00    1.24 Cb

e008.chtc.wisc.edu           x64/SL6          8    8         23.46      0     0.46    0.97 Cb

e009.chtc.wisc.edu           x64/SL6         11   16         23.46      5     0.00    0.81 **  

e010.chtc.wisc.edu           x64/SL6          8    8         23.46      0     4.46    0.76 Cb

matlab-build-1.chtc.wisc.edu x64/SL6          1   12         23.45     11    13.45    0.00 **  

matlab-build-5.chtc.wisc.edu x64/SL6          0   24         23.45     24    23.45    0.04 Ui

mem1.chtc.wisc.edu           x64/SL6         24   80       1009.67      8     0.17    0.60 **  

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

x64/SL6 10416     0    9984       427       0          0        0      5

x64/WinVista 2     2       0         0       0          0        0      0

Total 10418     2    9984       427       0          0        0      5

• To summarize, use the “-compact” option
condor_status -compact
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Job Universes

• HTCondor has different “universes” for 

running specialized job types
HTCondor Manual: Choosing an HTCondor Universe

• Vanilla (default)

– good for most software
HTCondor Manual: Vanilla Universe

• Set in the submit 

file using: 

universe = 

vanilla

http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341200000000000000
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Other Universes

• Local
– Run jobs on the submit node

• Container
– Runs jobs inside a container

– Container image can be specified

by user or by admin

• Grid
– Delegate jobs to another 

scheduler (e.g. SLURM, PBS, …)

– The basis for HTCondor-CE
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Other (Less Popular) Universes

• VM

– Run jobs inside a virtual machine

• Parallel

– Used for coordinating jobs across multiple 

servers (e.g. MPI code)

– Not necessary for single server multi-core 

jobs
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Typical User Command-Line Tools

• condor_submit Submit new Jobs
• condor_status View Ads in the Collector (e.g. EP Slots)
• condor_q View Jobs at an AP
• condor_q -analyze Why job/machines fail to match?
• condor_ssh_to_job Create ssh session to active job
• condor_submit -i Submit interactive job
• condor_hold / release Hold a job, or release a held job
• condor_run Submit and  block
• condor_rm Remove Jobs
• condor_prio Intra-User Job Prios
• condor_history Completed Job Info
• condor_submit_dag Submit new DAG workflow
• condor_chirp Access files/ad from active job
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Describing Workflows with

DAGMan
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Workflows

• Problem: Want to submit 

jobs in a particular order, 

with dependencies 

between groups of jobs

• Solution: Write a DAG

split

1 2 3 N

combine

...

download



73

DAG = ”directed acyclic graph”

• topological ordering of 
vertices (“nodes”) is 
established by directional 
connections (“edges”)

• “acyclic” aspect requires 
a start and end, with no 
looped repetition

– can contain cyclic 
subcomponents, covered 
in later slides for 
workflows

wikipedia.org/wiki/Directed_acyclic_graph

Wikimedia Commons

https://en.wikipedia.org/wiki/Directed_acyclic_graph
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DAGMan in the HTCondor Manual



75

...

Simple Example for this Tutorial

B1 B2 B3 BN

A

C

HTCondor Manual: DAGMan Applications > DAG Input File

• The DAG input file will 

communicate the 

“nodes” and directional 

“edges” of the DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
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Basic DAG input file: 

JOB nodes, PARENT-CHILD edges 

JOB A A.sub

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C• Node names are used by various 
DAG features to modify their 
execution by DAG Manager.

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
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Endless Workflow Possibilities

Wikimedia Commons

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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Endless Workflow Possibilities

https://confluence.pegasus.isi.edu
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Submitting and Monitoring a 

DAGMan Workflow



80

Basic DAG input file: 

JOB nodes, PARENT-CHILD edges 

JOB A A.sub

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
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Submitting a DAG to the queue 

• Submission command:

condor_submit_dag dag_file

$ condor_submit_dag my.dag

------------------------------------------------------------------

File for submitting this DAG to HTCondor : mydag.dag.condor.sub

Log of DAGMan debugging messages : mydag.dag.dagman.out

Log of HTCondor library output : mydag.dag.lib.out

Log of HTCondor library error messages : mydag.dag.lib.err

Log of the life of condor_dagman itself : mydag.dag.dagman.log

Submitting job(s).

1 job(s) submitted to cluster 87274940.

------------------------------------------------------------------

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000


82

Jobs are automatically submitted by the 

DAGMan job

• Seconds later, node A is submitted:

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 

OWNER BATCH_NAME SUBMITTED  DONE RUN IDLE TOTAL JOB_IDS

alice  my.dag+128 4/30 18:08 _ _ 1 5 129.0 

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:00:36 R 0 0.3 condor_dagman

129.0 alice 4/30 18:08 0+00:00:00 I 0 0.3 A_split.sh

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
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Jobs are automatically submitted by the 

DAGMan job

• After A completes, B1-3 are submitted

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL  JOB_IDS

alice  my.dag+128 4/30 8:08 1 _ 3 5 129.0...132.0 

4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman

130.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

131.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

132.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
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Jobs are automatically submitted by the 

DAGMan job

• After B1-3 complete, node C is submitted

HTCondor Manual: DAGMan > DAG Submission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 

OWNER BATCH_NAME   SUBMITTED DONE RUN IDLE TOTAL  JOB_IDS

alice  my.dag+128 4/30 8:08 4 _ 1 5 129.0...133.0 

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:46:36 R 0 0.3 condor_dagman

133.0 alice 4/30 18:54 0+00:00:00 I 0 0.3 C_combine.sh

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
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Removing a DAG from the queue

• Remove the DAGMan job in order to stop and remove 

the entire DAG:

condor_rm dagman_jobID

• Creates a rescue file so that only incomplete or 

unsuccessful NODES are repeated upon resubmission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 

OWNER BATCH_NAME   SUBMITTED DONE  RUN IDLE TOTAL  JOB_IDS

alice   my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0 

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_rm 128
All jobs in cluster 128 have been marked for removal

DAGMan > DAG Monitoring and DAG Removal
DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003107000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000
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Rescue Files For Resuming a Failed DAG 

• A rescue file is created when:

– a node fails, and after DAGMan advances 
through any other possible nodes

– the DAG is removed from the queue 
(or aborted; covered later)

– the DAG is halted and not unhalted 

• Resubmission uses the rescue file (if it 
exists) when the original DAG file is 
resubmitted
– override: condor_submit_dag dag_file -f

DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000
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PRE and POST scripts run on the 

submit server, as part of the node

JOB A A.sub

SCRIPT POST A sort.sh

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

SCRIPT PRE C tar_it.sh

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C

PRE script

POST script

• Use sparingly for lightweight work; 

otherwise include work in node jobs

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
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RETRY failed nodes to overcome 

transient errors

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• Retry a node up to N times if the exit code is 
non-zero:

RETRY node_name N

• See also: retry except for a particular exit code 
(UNLESS-EXIT), or retry scripts (DEFER)

• Note: Unnecessary for nodes (jobs) that can use
max_retries in the submit file

JOB A A.sub

RETRY A 5 

JOB B B.sub

PARENT A CHILD B

Example:

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109100000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102400000000000000
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RETRY applies to whole node, 

including PRE/POST scripts

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• PRE and POST scripts are included in retries

• RETRY of a node with a POST script uses the 

exit code from the POST script (not from the job)

– POST script can do more to determine node success, 

perhaps by examining JOB output

SCRIPT PRE A download.sh

JOB A A.sub

SCRIPT POST A checkA.sh

RETRY A 5

Example:

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109100000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102400000000000000
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Modular Organization and Control of DAG 

Components

• Splices and SubDags

• Node Throttling

• Node Priorities

• Lots more in the Manual…



Thank you! 

Questions?

Join us on the htcondor-users email list!

https://htcondor.org/mail-lists/#user
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