

Linux System Tuning for Access Points

Greg Thain

Agenda

Goals of Tuning / This talk:

Prevent Crashes
Raise Throughput

Topics:

Provisioning Memory

Disk space and disk latency

Sandbox transfers

Cpus

Don't Panic!

Out of the box defaults work for many sites

Fewer than 10,000 jobs, probably ok

But many of you are running bigger sites...

Or are using VMs/container with knobs

The memory hotplug surprise

Kernel autosizes most knobs appropriately fds, disk caches, process limits, etc.

...Except when vm memory hotplug enabled.

Use worker node for AP?

Works fine for small sites,

But if you have the budget, here's what to do...

Biggest problem with Access Points?

Users!

\$ ssh head-node Password:

Welcome to Ubuntu 18.04.6 LTS

Success. Logging you in...

Running jobs directly on the head node will not be tolerated and will lead to the immediate suspension of your account to protect the scheduler.

Users (generally) want to do right thing "AP is a shared resource, treat it like one"

"Use some of the AP, but not too much" - ???

```
$ uptime
12:16:52 up 53 days, 35 users, load average: 12.49, 10.98, 12.07
$ ps auxwwr
                  1364252 488980 R 126:11 /home/gthain/.vscode...-
gthain 1033
             0.0
             0.0
                  2364252 184980 R 225:01 /home/gthain/.vscode...-
gthain 1033
gthain 1033
             0.0
                  2360152 388980 R 26:11 /home/gthain/.vscode...-
gthain 1033
             0.0
                  3364252 288980 R 326:11 /home/gthain/.vscode...-
             0.0 1004252 188980 R 426:11 /home/gthain/.vscode...-
gthain 1033
```

Solution: ulimit the cpu

/etc/security/limits.d/30-cpus Units are in **MINUTES!** Prevent roque user proces Too many resources for too * soft cpu 120 * hard cpu unlimited soft root cpu unlimited hard root cpu

Memory

1st rule of provisioning AP Memory:

Memory

1st rule of provisioning AP Memory:

DO NOT ENABLE SWAPPING / PAGING

Memory

Schedd holds all* job ads IN MEMORY *including held jobs! Roughly 1Gb / 10,000 ads One condor_shadow process per running job Roughly 1 Mb / condor_shadow we work hard to limit this (spoiler: hard)

Schedd Forks for queries!

Want 3x headroom in case fork gets bad

So (rule of thumb...)

 $(3 * jobs_{total} * 1Gb) + (jobs_{running} * 1Mb)$

+ Whatever user processes need

CPUs

condor_schedd is (mostly) single-threaded what does this mean? Adding more cpus doesn't help schedd One slow call holds up the whole thing Leads to DaemonCoreDutyCycle

DaemonCoreDutyCycle

```
condor_status –af
RecentDaemonCoreDutyCyle
```

- < 0.95 → Probably OK
- ≥ 0.95 → Probably too busy

DC status from 2023-09-19 14:59:05 to 2023-09-19 15:03:05: Duty Cycle: 88.09% Ops/second: 40.375 Runtime stats from 2023-09-19 14:59:05 to 2023-09-19 15:03:05: InstRt InstAvq TotAvq TotMax RtPctAvq InstRate AvqRate Item 93.115 0.07747 0.13 27.98 59.7981 5.01 0.49 Timer start job 78.429 0.09472 0.10 27.94 99.2199 3.45 0.62 Create ProcessTot 5.01 fsync 39.962 0.00978 0.03 107.81 36.4341 17.02 22.536 0.33142 0.22 63.14 150.6389 0.28 0.28 SCWalkJobQ 17.386 0.39513 0.26 5.37 152.7251 0.18 0.17 SCBuildPrioRec 16.506 0.37515 0.25 5.36 152.2462 0.18 0.17 SCWalkJobQ get job prio 7.628 0.16582 0.08 436.30 211.2148 0.19 0.41 Timer timeout 0.18 21.41 62.6880 0.24 6.410 0.11245 0.17 Timer StartJobHandler 5.979 0.00000 0.00 0.15 101.7150 12196.33 9285.09 SCGetAutoCluster 0.07 111.3440 12177.73 9265.80 SCGetAutoCluster hit 4.558 0.00000 0.00 4.352 0.43525 0.31 2.35 140.5082 0.04 0.05 SCWalkJobQ count a job 3.994 0.01035 0.01 19.10 119.8948 1.61 0.62 Signal HandleDC SERVICEWAITPIDS 2.095 0.00858 0.01

1.100 0.09167 0.02 1.17 473.9021 0.05 0.08 Timer TokenRequesttryTokenRequests

4.48

0.02

4.84

0.98

0.04

18.60 19.29 SCGetAutoCluster signature

0.02 Timer PeriodicExpr

0.17 SCBuildPrioRec sort

26.82 14.36 Command QMGMT WRITE CMD

0.66 Signal_HandleDC_SIGCHLD
1.91 Timer CheckTransferQueue

0.02 SCWalkJobQ PeriodicExprEval

1.28 Command TRANSFER QUEUE REQUEST

0.53 Timer SelfDrainingQueuetimerHandlerjob is finished

0.05 SCWalkJobQ check for spool zombies

0.15 108.3520

0.65 102.5686

0.25 312.8221

0.68 171.1175

63.14 116.8294

0.00 25.55 108.1283

3.46 89.0456

4.94 84.6769

1.420 0.00032 0.00

0.06

0.00

0.00

0.14

0.00

0.00

0.677 0.16925 0.14 63.14 116.8083 0.02

0.577 0.01310 0.01 2.43 188.7987 0.18

1.001 0.10009

0.993 0.00229

0.699 0.00065

0.676 0.16912

0.621 0.00053

0.558 0.00237

0.619 0.00010

Two blocking calls to know

1. Slow DNS queries

2. Slow fsync

Slow DNS queries in SchedLog

```
09/12/23 10:14:02 (D_ALWAYS)
WARNING: Saw slow DNS query,
which may impact entire system:
getaddrinfo(cm.chtc.wisc.edu)
took 24.445889 seconds.
```

Slow fsync

```
09/19/23 00:37:06 (pid:2903754) (D_ALWAYS:2) Transaction::Commit(): fdatasync() took 11 seconds to run
```

Schedd not only user of CPU

Xfer'ing shadow uses 5-10% of a cpu* Very little otherwise

User work also uses cpus
So provision cpus on APs accordingly

Disk: Two aspects

1. Space

2. Latency (not throughput)

SPOOL

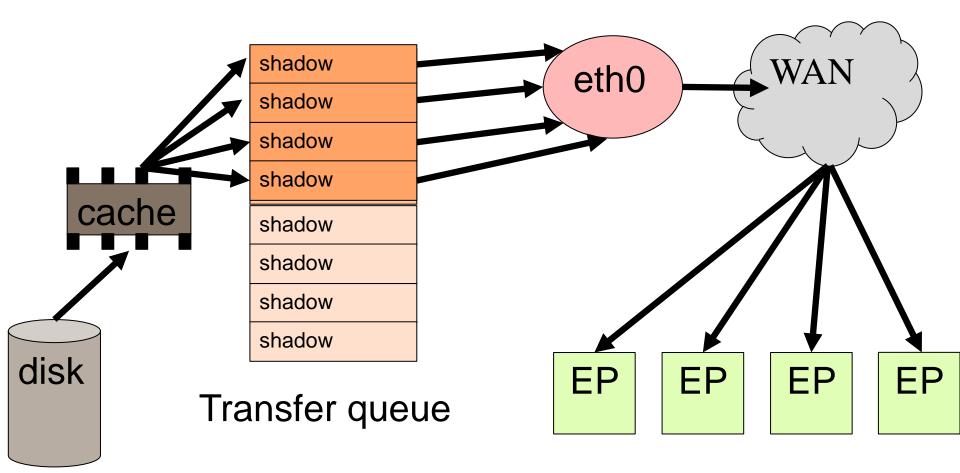
All spooled files (including checkpoints) go in condor_config_val SPOOL Bad things will happen if this fills up. Ideally on separate partition Can configure a per-user SPOOL with

job_queue.log

(sorry about the name log)

The schedd's transaction log
FSYNC'd very frequently
can slow down whole schedd

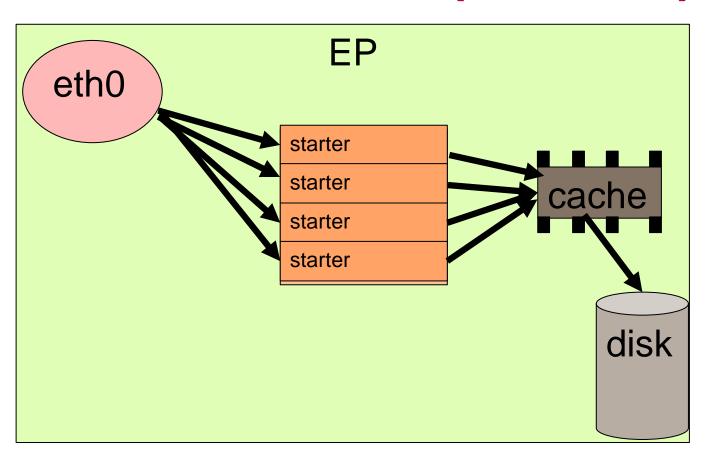
Fsync and ext3

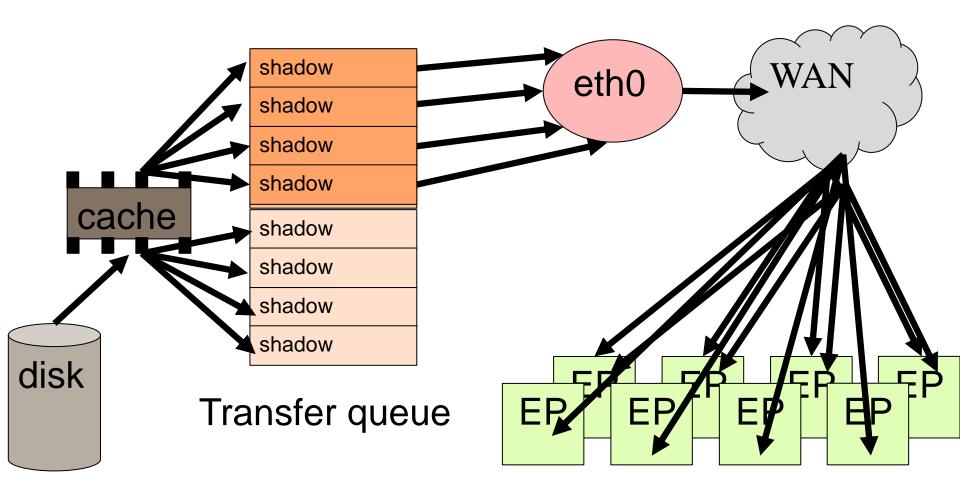

Fsync (actually fdatasync) call on ext3 can be very slow Please use JOB_QUEUE_LOG to put job_queue.log on own partition AND if one nyme/ssd drive, put it there. May be biggest thing you can do for the AP

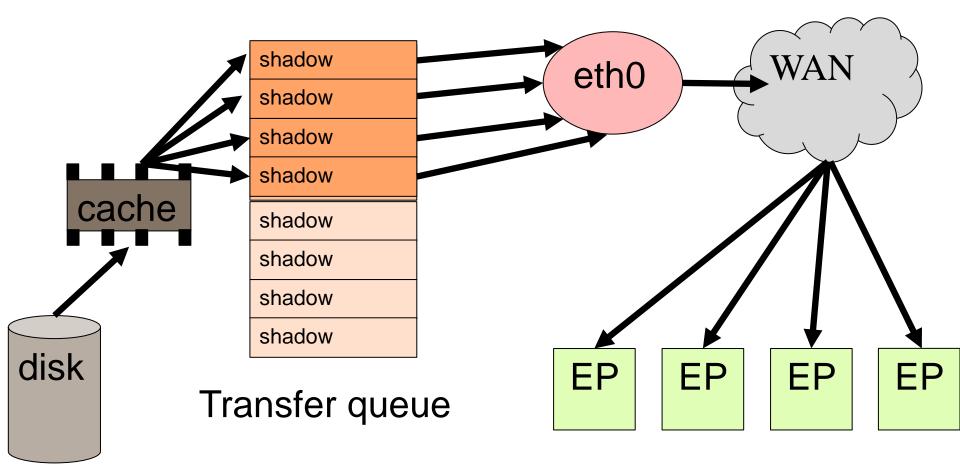
Networking

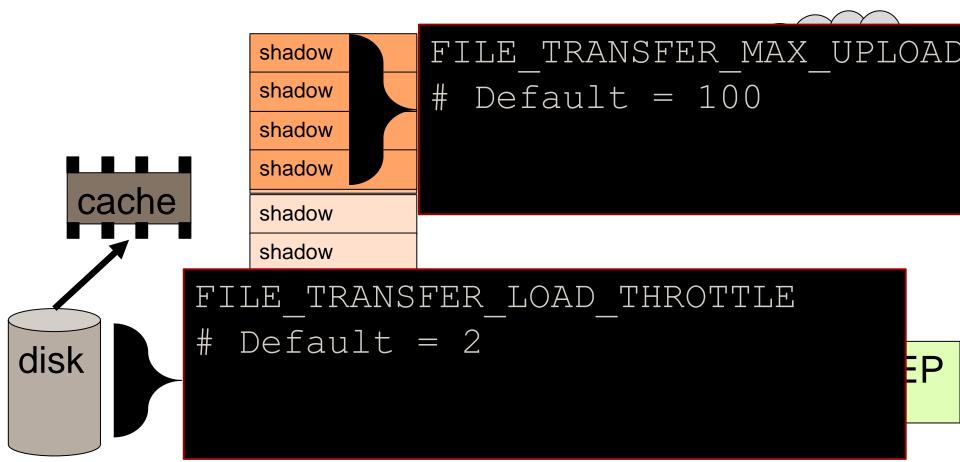
Assuming condor file transfer...

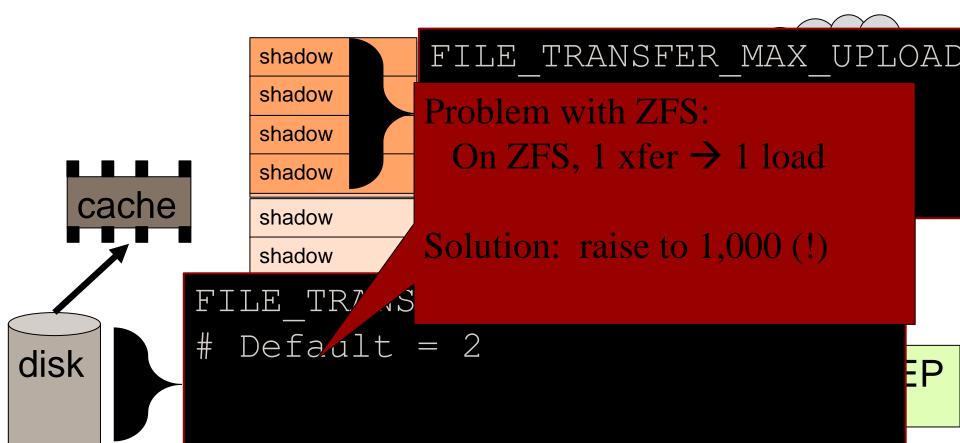
More is better – 10Gb, 100+Gb
Install fq_codel if not already on
Think about ratio of AP to EP and
of concurrent transfers

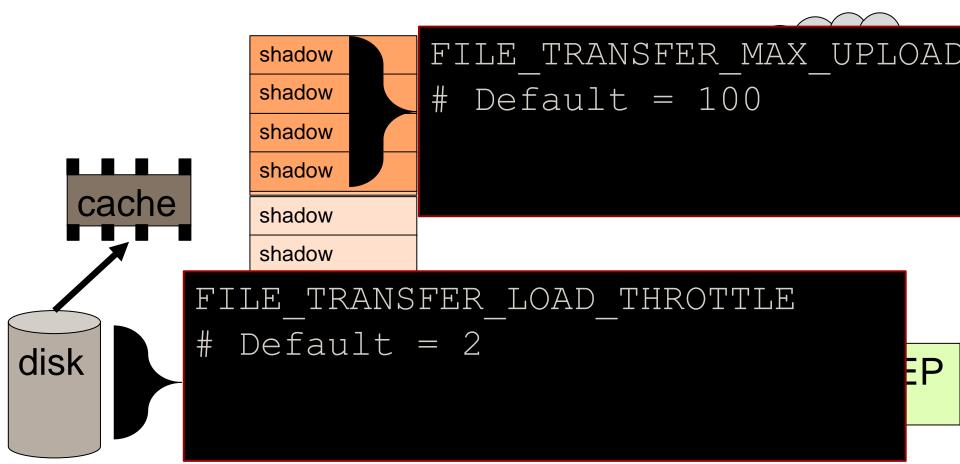

File Transfer Model

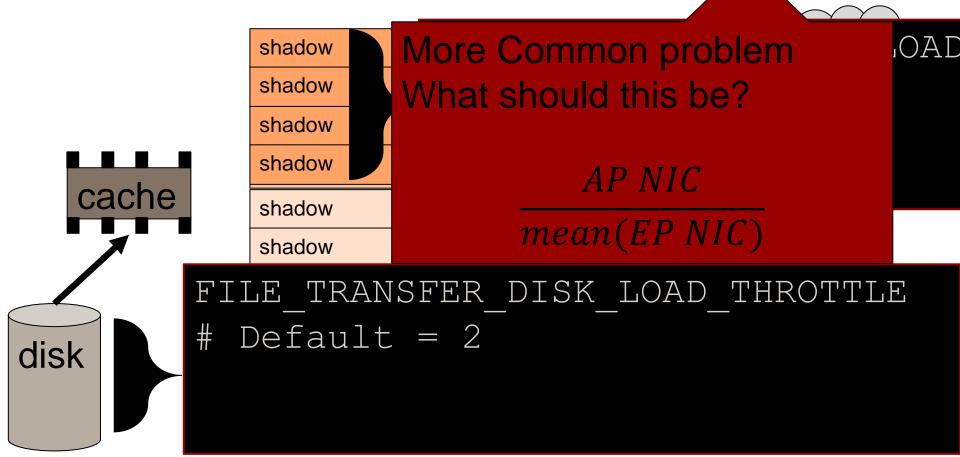

File Transfer Model


File Transfer (EP side)




File Transfer – WHY?




File Transfer Speeds

Things to look at

```
$ condor_status -schedd -l name_of_your_schedd | grep Transfer
FileTransferMBWaitingToUpload = 0.0
FileTransferUploadBytes = 181516308696053.0
FileTransferUploadBytesPerSecond_1d = 64747373.05902614
FileTransferUploadBytesPerSecond_1h = 215636610.644708
FileTransferUploadBytesPerSecond_1m = 56930145.62086731
FileTransferUploadBytesPerSecond_5m = 120896405.913133
TransferQueueMaxUploading = 100
```

TransferQueueNumWaitingToUpload = 0
TransferQueueNumWaitingToUploadPeak = 5582
TransferQueueUploadWaitTime = 0
TransferQueueUploadWaitTimePeak = 11482

TransferOueueNumUploading = 10

TransferOueueNumUploadingPeak = 100

Thank you!

Remember:

Don't panic about modest APs Put job_queue.log on own disk (nvme?) Keep monitoring your AP Especially DaemonCoreDutyCycle Questions?