Token Taxonomy

Brian Bockelman
European HTCondor Workshop 2023

Tokens: A Primer

Authorization and Credentials

EVENT CODE

* A credential is a document detailing an " maneesseczo © ¢ Canir PR
issued identity or an authorization. Tlew Yook Yamkeos 1= o=

* Think: passport, driver’s license, diploma. e ol = o

.] . tl.‘. F: {!.‘. YANKEE STADIUM mg Fi

* In computing, we typically use credentials B 05 PR uED ePR 6, 2008 TiosPH B Chuuyoc
as part of the authorization to utilize a _ e
THE FINAL SEASON o8 “Siiiziiie=s @6 tz==gh
resource. = Bl

 Two common approaches to auth’z:

* Authentication and identity mapping:
credential establishes who you are and then
mapped to a local identity with enumerated
authorizations.

e Capabilities: credential is an assertion of what Vil

of America

you can do. i1

PASSPORT

Capabilities are the right way to go on distributed systems!

Bearer Tokens and JWT

* Capability-based credentials are often
implemented as bearer tokens.

* To establish authorization, one must establish
“proof of possession” to the remote side.

* For X.509 credentials, this is done by signing a
statement with the private key bound to the

credential.

* For tokens, we prove possession by sending the
token itself to the remote side.

 What are the tradeoffs here?

* Whoever bears the token is assumed to have
the authorization — hence the name!

eyJraWQi0iJyc2ExIiwiYWxnIjoiUIMyNTYifQ.eyJ3bGNnLnZ1ciI6IEUMCISINNLYiI6I;jI3MjMO0DQZLWZ1ZGY
tNDJOC11iYjgxLWEXNjk1YmIkN2MyOCIsImF1ZCI6Imh@dHBZzO1wvXC93bGNnLmNL1cm4uY2hcl2p3dFwvdjFcL2Fue
SIsIm5iZiI6MTYX0Dc3Njg4NCwic2NveGUi0iJveGVualQgb2ZmbGluZVOhY2N1c3Mgc3RvemFnZSS5yZWFkO1wvIHN
0b3JhZ2UubWOkaWZ501wvIHdsY2cilCIpc3MiOiJodHRwezpcl 1wvd2xjZy5jbG91ZC5jbmFmlmluZm4uaXRelyIsT
mV4cCI6GMTYx0Dc4MDQANCwiaWF@I joxNjE4Nzc20DgOLCIqdGki0i] jM2MWYWFkY1i@wMDIZzLTQWMzEtYmVhZSOwYTJ
kYWQ2Y;jUzNDQiLCJjbGl1bnRfaWQi0iJiMGQ4N2QOYi0wMjFKLTRMN2Yt0TcOYyliY2E2YTh1M2J1NDgifQ.04ZyWE
ZwA1Lygd-uMHgKkNSggz7xuxa4iMy48u9B964QXPDuyi2wd]zeaKt2XAyH1kUyx0_FQglGmPPcNIXJcrNeMtkh7P3W
Vs@A90g8B_0JfIT4ajNBNj_teMPwK8pKxgU5BIvOopNkwE_wzkuUMISteX8MTXqLT7pDhuzvVgM

HEADER
{
typ": "JWT",
alg”: "RS256"
}
PAYLOAD:
scope”: "read:/protected write:/store/u2532
aud”: "https://demo.scitokens.org
iss”: "https://demo.scitokens.org”,
sub”: "bbockelm@cern.ch
exp : 1526954997,
lat™ @ 15269543C

nbf": 1526954397,
jti": "78c44ce9-62bb-43e8-a7ab6-fB35f7ebd42b

Bearer Tokens and JWT

 An opaque bearer token is a random
sequence of bytes.

Credentials * Quite secure but typically difficult to
coordinate in a distributed system with many
independent actors.

* A JSON Web Token (JWT) is a bearer token
using a specific JSON-based format:
* Often signed by a public key.
* Allows arbitrary key-value pairs to be asserted.

* Sequence of RFCs defining the semantics of
certain keys (subject, expiration time, issuer,
unique identifier).

Building Authorization Schemes with JWTs

e Think of a JWT as a format and a toolbox
for building an authorization system.

* To build an authorization system, there JWT
needs to be common agreement on how
to interpret the contents of the JWT and
common semantics.

* We must therefore build a profile
describing how the system work.

* Analogy: X.509 vs GSI

* Analogy: Grammar vs Language Note: An authorization profile is both a
superset and subset of JIWTs. It

restricts what’s considered a valid
token plus adds rules for interpretation.

HTCSS and Tokens

Authorization vs Management

HTCSS uses tokens in two contexts:
» Authorization: Providing access to a HTCSS component / daemon.

* Credential Management: Managing credentials on behalf of a user,
typically meant for using credentials within jobs.

Tokens in HTCSS

Credential
Management

Authorization

Tokens and Authorization

Tokens in HTCSS

HTCSS supports two different
profiles for token-based

. authorization:
Credential

SRR AT IDTOKENS: HTCSS's
“native” token format for
establishing identity.

* SCITOKENS: Authorization
IPUEISE SIEELSERE based on signed JWTs from
an independent issuer.

Authorization

Parts of an IDTOKEN

An IDTOKEN is a token signed with a symmetric
key held by the remote daemon. It has the
following parts:

* Identifier: This is the “HTCondor identity”

e |ssuer: The trust domain — where the token is
expected to be honored.

* Signing key name: The name of the key used
to sign the token. The server must have this
key to accept the token!

* Restrictions on use:
* “Not before” and “expiration” times.

* A list of authorizations for the token (intersected
with the authorizations the HTCondor identity
already has!).

{
"iat": 1588710496,
"jss": "flock.opensciencegrid.org",
"scope": "condor:/READ condor:/ADMINISTRATOR",
"sub": "osg-admin@flock.opensciencegrid.org"
}

Discussion Topics:
* Why symmetric
signatures?

 What’s important about
the “trust domain”?

IDTOKEN Authentication

 The IDTOKEN authentication protocol is based on a shared secret
verification protocol (AKEP2).

1. Client sends the public part of the token to the server and a client nonce.

2. Server uses its symmetric key to compute the token signature.
* Now both sides can derive a shared secret based on the token signature!

3. Server responds with a server nonce and the hash of the token + client
nonce + shared secret.

4. Client verifies the server response and sends its hash of the token +
server nonce + shared secret.

To succeed: Client needs the signed token, server needs the signing key.

Note: at no point are secrets sent over the network! Public contents of the
token are sent in the clear.

SCITOKENS

* Like IDTOKENS, SCITOKENS builds on JWT.

* Uses libSciTokens from the scitokens-cpp project. Any token conforming to a
supported profile can be used (misnomer: not limited to SciTokens. WLCG
tokens are great!).

 Signatures are public key based. Daemon does not need the private
key to verify the token’s validity.

* Good when the daemon is independent from the signing entity.
* Daemon looks up the signing key based on the issuer URL.

* Otherwise, many similar concepts — subjects, issuers, restrictions.

* Since it’s not a “native” credential, the subject/groups are mapped to a local
HTCondor identifier.

SCITOKENS Authentication

* Since the daemon doesn’t have the signing key, we don’t have a
shared secret.

* Instead, we bootstrap the secure channel by establishing a TLS
connection from client to server.
* NOTE: Implies the server has a host certificate, shares common CAs with
client.
* Once established, the client sends the entire token to the server.
* Server can then verify the token then authorize the client.
* Food for thought: what’s the impact of a malicious server?

Token Arcana

We try to have a complete ecosystem around tokens. Examples:

 condor_token_request: Securely request any arbitrary token.

* Approval of such a request is left to the admin. Great for bootstrapping
authentication when you have a way to communicate with the user out-of-
band. No copy/pasting tokens in your email!

 condor_token_fetch: Returns a fresh IDTOKEN equivalent to
the current security session.

 condor_scitoken_exchange: Returns a fresh IDTOKEN
equivalent to the mapped input SciToken.

* Note: SCITOKENS auth requires a TLS cert for the remote daemon. IDTOKENS
does not!

Credential Management

Credential Management

Tokens in HTCSS An HTCSS AP can manage a
user’s credential wallet.

e Each user has their own
wallet.

.. Credential .
Authorization Management * The types of available

, credentials are configured by

the administrator.

* A job specifies the
credentials it needs!

e HTCondor ensures the token

is available & up-to-date on
Local Issuer Kerberos the EP

Credentials — the User View

Each job specifies a list of credential services required to execute:
* The credential services list is managed by the AP administrator.

* Some services can generate multiple credentials; these additional
credentials are referred to by “handles”.

* This allows the user to specify more fine-grained authorizations than the
default.

condor_submit interprets this list, potentially asking the user for
additional information to generate the credential.

* Depending on the credential service implementation, this information
may come via the CLI (Kerberos) or a link to complete the generation
in a browser (OAuth?2).

WARNING: We’re bad at naming things

e We caljll tfze condor_submit configurations for credential management
“oauth” :

* In fact, only one of four commonly used plugins use oauth!

use_oauth_services = <list of credential service names> WO I k_l n- p rog ress.:

A comma-separated list of credential-providing service names for which the job should be ~ Significant cleanup of terminology and
provided credentials for the job execution environment. The credential service providers abstractions are desired for HTCSS 23 .x!
must be configured by the pool admin. For example:

, .
<credential_service_name>_oauth_permissions[_<handle>] = <scope> * You can’t ask the AP the list of

A string containing the scope(s) that should be requested for the credential named services.

, .
<credential_service_name>[_<handle>], where <handle> is optionally provided to * You can’t enumerate the available
differentiate between multiple credentials from the same credential service provider. handles or their definitions.

* You can’t fetch your own credentials

* You can’t BYOC: Bring Your Own
Credential.

* The “API” to interact is largely
condor_submit

<credential_service_name>_oauth_resource[_<handle>] = <resource>
A string containing the resource (or “audience”) that should be requested for the credential
named <credential_service_name>[_<handle>], where <handle> is optionally provided to
differentiate between multiple credentials from the same credential service provider.

Credentials - the Admin View

Credentials in the wallet are opaque. The AP doesn’t assume a specific
type or format!

* Hence, each credential type must be serviced by a daemon
implementing a “credmon” interface.

* Several daemons are shipped with HTCSS ... but you’re encouraged to write
your own if needed!

* There are two credmon interfaces — Oauth and Kerberos. Each AP can only
have one of each.

* The CredD daemon provides the API for credential management.
* Must be running for users to utilize the wallet!

We're bad at naming things, Redux

* Want to store a credential?
Use condor_store cred

* Want to delete a credential?
Use condor_store cred
* Want to query a credential?

Use condor_store cred
* Want to list your credentials?

Too bad!

Credential Management Data Model

Only one
Credmon 2

Admin Credmon 1 (type: OAuth2) (type: KRBS) credmon per
View type is permitted
U.S er/Job Service A Service B Service C

View

Handles are

Handle | Handle Il)
optional

Our Complete Taxonomy

Tokens in HTCSS

Credential
Management

Authorization

IDTOKENS SCITOKENS

Local Issuer Kerberos

Questions?

This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2030508 and OAC-2114989. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

