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Tokens: A Primer



Authorization and Credentials

• A credential is a document detailing an 
issued identity or an authorization.
• Think: passport, driver’s license, diploma.

• In computing, we typically use credentials 
as part of the authorization to utilize a 
resource.
• Two common approaches to auth’z:

• Authentication and identity mapping: 
credential establishes who you are and then 
mapped to a local identity with enumerated 
authorizations.

• Capabilities: credential is an assertion of what 
you can do.

Capabilities are the right way to go on distributed systems!



Bearer Tokens and JWT

• Capability-based credentials are often 
implemented as bearer tokens.
• To establish authorization, one must establish 

“proof of possession” to the remote side.
• For X.509 credentials, this is done by signing a 

statement with the private key bound to the 
credential.
• For tokens, we prove possession by sending the 

token itself to the remote side.
• What are the tradeoffs here?

• Whoever bears the token is assumed to have 
the authorization – hence the name!



Bearer Tokens and JWT

• An opaque bearer token is a random 
sequence of bytes.
• Quite secure but typically difficult to 

coordinate in a distributed system with many 
independent actors.

• A JSON Web Token (JWT) is a bearer token 
using a specific JSON-based format:
• Often signed by a public key.
• Allows arbitrary key-value pairs to be asserted.
• Sequence of RFCs defining the semantics of 

certain keys (subject, expiration time, issuer, 
unique identifier).
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Building Authorization Schemes with JWTs

• Think of a JWT as a format and a toolbox 
for building an authorization system.
• To build an authorization system, there 

needs to be common agreement on how 
to interpret the contents of the JWT and 
common semantics.
• We must therefore build a profile 

describing how the system work.
• Analogy: X.509 vs GSI
• Analogy: Grammar vs Language
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Note: An authorization profile is both a 
superset and subset of JWTs.  It 

restricts what’s considered a valid 
token plus adds rules for interpretation.
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HTCSS and Tokens



Authorization vs Management

HTCSS uses tokens in two contexts:
• Authorization: Providing access to a HTCSS component / daemon.
• Credential Management: Managing credentials on behalf of a user, 

typically meant for using credentials within jobs.
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Tokens and Authorization

HTCSS supports two different 
profiles for token-based 
authorization:
• IDTOKENS: HTCSS’s 

“native” token format for 
establishing identity. 
• SCITOKENS: Authorization 

based on signed JWTs from 
an independent issuer.
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Parts of an IDTOKEN

An IDTOKEN is a token signed with a symmetric 
key held by the remote daemon. It has the 
following parts:
• Identifier: This is the “HTCondor identity”
• Issuer: The trust domain – where the token is 

expected to be honored.
• Signing key name: The name of the key used 

to sign the token.  The server must have this 
key to accept the token!
• Restrictions on use:

• “Not before” and “expiration” times.
• A list of authorizations for the token (intersected 

with the authorizations the HTCondor identity 
already has!).

Discussion Topics:
• Why symmetric 

signatures?
• What’s important about 

the “trust domain”?



IDTOKEN Authentication

• The IDTOKEN authentication protocol is based on a shared secret 
verification protocol (AKEP2).

1. Client sends the public part of the token to the server and a client nonce.
2. Server uses its symmetric key to compute the token signature.

• Now both sides can derive a shared secret based on the token signature!
3. Server responds with a server nonce and the hash of the token + client 

nonce + shared secret.
4. Client verifies the server response and sends its hash of the token + 

server nonce + shared secret.
To succeed: Client needs the signed token, server needs the signing key.
Note: at no point are secrets sent over the network!  Public contents of the 
token are sent in the clear.



SCITOKENS

• Like IDTOKENS, SCITOKENS builds on JWT.
• Uses libSciTokens from the scitokens-cpp project.  Any token conforming to a 

supported profile can be used (misnomer: not limited to SciTokens.  WLCG 
tokens are great!).

• Signatures are public key based.  Daemon does not need the private 
key to verify the token’s validity.
• Good when the daemon is independent from the signing entity.
• Daemon looks up the signing key based on the issuer URL.

• Otherwise, many similar concepts – subjects, issuers, restrictions.
• Since it’s not a “native” credential, the subject/groups are mapped to a local 

HTCondor identifier.



SCITOKENS Authentication

• Since the daemon doesn’t have the signing key, we don’t have a 
shared secret.
• Instead, we bootstrap the secure channel by establishing a TLS 

connection from client to server.
• NOTE: Implies the server has a host certificate, shares common CAs with 

client.

• Once established, the client sends the entire token to the server.
• Server can then verify the token then authorize the client.
• Food for thought: what’s the impact of a malicious server?



Token Arcana

We try to have a complete ecosystem around tokens.  Examples:
• condor_token_request: Securely request any arbitrary token.
• Approval of such a request is left to the admin.  Great for bootstrapping 

authentication when you have a way to communicate with the user out-of-
band.  No copy/pasting tokens in your email!

• condor_token_fetch: Returns a fresh IDTOKEN equivalent to 
the current security session.
• condor_scitoken_exchange: Returns a fresh IDTOKEN 

equivalent to the mapped input SciToken.
• Note: SCITOKENS auth requires a TLS cert for the remote daemon.  IDTOKENS 

does not!



Credential Management



Credential Management

An HTCSS AP can manage a 
user’s credential wallet.
• Each user has their own 

wallet.
• The types of available 

credentials are configured by 
the administrator.
• A job specifies the 

credentials it needs!
• HTCondor ensures the token 

is available & up-to-date on 
the EP.
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Credentials – the User View

Each job specifies a list of credential services required to execute:
• The credential services list is managed by the AP administrator.
• Some services can generate multiple credentials; these additional 

credentials are referred to by “handles”.
• This allows the user to specify more fine-grained authorizations than the 

default.
condor_submit interprets this list, potentially asking the user for 
additional information to generate the credential.
• Depending on the credential service implementation, this information 

may come via the CLI (Kerberos) or a link to complete the generation 
in a browser (OAuth2).



WARNING: We’re bad at naming things

• We call the condor_submit configurations for credential management 
“oauth” :(
• In fact, only one of four commonly used plugins use oauth!

Work-in-progress:
Significant cleanup of terminology and 
abstractions are desired for HTCSS 23.x!  
For example:
• You can’t ask the AP the list of 

services.
• You can’t enumerate the available 

handles or their definitions.
• You can’t fetch your own credentials 
• You can’t BYOC: Bring Your Own 

Credential.
• The “API” to interact is largely 

condor_submit



Credentials - the Admin View

Credentials in the wallet are opaque.  The AP doesn’t assume a specific 
type or format!
• Hence, each credential type must be serviced by a daemon 

implementing a “credmon” interface.
• Several daemons are shipped with HTCSS … but you’re encouraged to write 

your own if needed!
• There are two credmon interfaces – Oauth and Kerberos.  Each AP can only 

have one of each.

• The CredD daemon provides the API for credential management.
• Must be running for users to utilize the wallet!



We’re bad at naming things, Redux

• Want to store a credential?

• Want to delete a credential?

• Want to query a credential?

• Want to list your credentials?

Use condor_store_cred

Use condor_store_cred

Use condor_store_cred

Too bad!



Credential Management Data Model

Service A Service B Service C

Credmon 1 (type: OAuth2) Credmon 2 
(type: KRB5)

Only one 
credmon per 
type is permitted

Admin 
View

User/Job 
View

Handle I Handle II Handles are 
optional



Our Complete Taxonomy
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Questions?
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