
Token Taxonomy
Brian Bockelman

European HTCondor Workshop 2023

Tokens: A Primer

Authorization and Credentials

• A credential is a document detailing an
issued identity or an authorization.
• Think: passport, driver’s license, diploma.

• In computing, we typically use credentials
as part of the authorization to utilize a
resource.
• Two common approaches to auth’z:

• Authentication and identity mapping:
credential establishes who you are and then
mapped to a local identity with enumerated
authorizations.

• Capabilities: credential is an assertion of what
you can do.

Capabilities are the right way to go on distributed systems!

Bearer Tokens and JWT

• Capability-based credentials are often
implemented as bearer tokens.
• To establish authorization, one must establish

“proof of possession” to the remote side.
• For X.509 credentials, this is done by signing a

statement with the private key bound to the
credential.
• For tokens, we prove possession by sending the

token itself to the remote side.
• What are the tradeoffs here?

• Whoever bears the token is assumed to have
the authorization – hence the name!

Bearer Tokens and JWT

• An opaque bearer token is a random
sequence of bytes.
• Quite secure but typically difficult to

coordinate in a distributed system with many
independent actors.

• A JSON Web Token (JWT) is a bearer token
using a specific JSON-based format:
• Often signed by a public key.
• Allows arbitrary key-value pairs to be asserted.
• Sequence of RFCs defining the semantics of

certain keys (subject, expiration time, issuer,
unique identifier).

Credentials

Bearer Tokens

JWT

Building Authorization Schemes with JWTs

• Think of a JWT as a format and a toolbox
for building an authorization system.
• To build an authorization system, there

needs to be common agreement on how
to interpret the contents of the JWT and
common semantics.
• We must therefore build a profile

describing how the system work.
• Analogy: X.509 vs GSI
• Analogy: Grammar vs Language

JWT
Sci

Tokens WLCG

AARC

Note: An authorization profile is both a
superset and subset of JWTs. It

restricts what’s considered a valid
token plus adds rules for interpretation.

IDT
OKE
NS

HTCSS and Tokens

Authorization vs Management

HTCSS uses tokens in two contexts:
• Authorization: Providing access to a HTCSS component / daemon.
• Credential Management: Managing credentials on behalf of a user,

typically meant for using credentials within jobs.

Tokens in HTCSS

Authorization Credential
Management

Tokens and Authorization

HTCSS supports two different
profiles for token-based
authorization:
• IDTOKENS: HTCSS’s

“native” token format for
establishing identity.
• SCITOKENS: Authorization

based on signed JWTs from
an independent issuer.

Tokens in HTCSS

Authorization Credential
Management

IDTOKENS SCITOKENS

Parts of an IDTOKEN

An IDTOKEN is a token signed with a symmetric
key held by the remote daemon. It has the
following parts:
• Identifier: This is the “HTCondor identity”
• Issuer: The trust domain – where the token is

expected to be honored.
• Signing key name: The name of the key used

to sign the token. The server must have this
key to accept the token!
• Restrictions on use:

• “Not before” and “expiration” times.
• A list of authorizations for the token (intersected

with the authorizations the HTCondor identity
already has!).

Discussion Topics:
• Why symmetric

signatures?
• What’s important about

the “trust domain”?

IDTOKEN Authentication

• The IDTOKEN authentication protocol is based on a shared secret
verification protocol (AKEP2).

1. Client sends the public part of the token to the server and a client nonce.
2. Server uses its symmetric key to compute the token signature.

• Now both sides can derive a shared secret based on the token signature!
3. Server responds with a server nonce and the hash of the token + client

nonce + shared secret.
4. Client verifies the server response and sends its hash of the token +

server nonce + shared secret.
To succeed: Client needs the signed token, server needs the signing key.
Note: at no point are secrets sent over the network! Public contents of the
token are sent in the clear.

SCITOKENS

• Like IDTOKENS, SCITOKENS builds on JWT.
• Uses libSciTokens from the scitokens-cpp project. Any token conforming to a

supported profile can be used (misnomer: not limited to SciTokens. WLCG
tokens are great!).

• Signatures are public key based. Daemon does not need the private
key to verify the token’s validity.
• Good when the daemon is independent from the signing entity.
• Daemon looks up the signing key based on the issuer URL.

• Otherwise, many similar concepts – subjects, issuers, restrictions.
• Since it’s not a “native” credential, the subject/groups are mapped to a local

HTCondor identifier.

SCITOKENS Authentication

• Since the daemon doesn’t have the signing key, we don’t have a
shared secret.
• Instead, we bootstrap the secure channel by establishing a TLS

connection from client to server.
• NOTE: Implies the server has a host certificate, shares common CAs with

client.

• Once established, the client sends the entire token to the server.
• Server can then verify the token then authorize the client.
• Food for thought: what’s the impact of a malicious server?

Token Arcana

We try to have a complete ecosystem around tokens. Examples:
• condor_token_request: Securely request any arbitrary token.
• Approval of such a request is left to the admin. Great for bootstrapping

authentication when you have a way to communicate with the user out-of-
band. No copy/pasting tokens in your email!

• condor_token_fetch: Returns a fresh IDTOKEN equivalent to
the current security session.
• condor_scitoken_exchange: Returns a fresh IDTOKEN

equivalent to the mapped input SciToken.
• Note: SCITOKENS auth requires a TLS cert for the remote daemon. IDTOKENS

does not!

Credential Management

Credential Management

An HTCSS AP can manage a
user’s credential wallet.
• Each user has their own

wallet.
• The types of available

credentials are configured by
the administrator.
• A job specifies the

credentials it needs!
• HTCondor ensures the token

is available & up-to-date on
the EP.

Tokens in HTCSS

Authorization Credential
Management

OAuth2

Local Issuer

Vault

Kerberos

Credentials – the User View

Each job specifies a list of credential services required to execute:
• The credential services list is managed by the AP administrator.
• Some services can generate multiple credentials; these additional

credentials are referred to by “handles”.
• This allows the user to specify more fine-grained authorizations than the

default.
condor_submit interprets this list, potentially asking the user for
additional information to generate the credential.
• Depending on the credential service implementation, this information

may come via the CLI (Kerberos) or a link to complete the generation
in a browser (OAuth2).

WARNING: We’re bad at naming things

• We call the condor_submit configurations for credential management
“oauth” :(
• In fact, only one of four commonly used plugins use oauth!

Work-in-progress:
Significant cleanup of terminology and
abstractions are desired for HTCSS 23.x!
For example:
• You can’t ask the AP the list of

services.
• You can’t enumerate the available

handles or their definitions.
• You can’t fetch your own credentials
• You can’t BYOC: Bring Your Own

Credential.
• The “API” to interact is largely

condor_submit

Credentials - the Admin View

Credentials in the wallet are opaque. The AP doesn’t assume a specific
type or format!
• Hence, each credential type must be serviced by a daemon

implementing a “credmon” interface.
• Several daemons are shipped with HTCSS … but you’re encouraged to write

your own if needed!
• There are two credmon interfaces – Oauth and Kerberos. Each AP can only

have one of each.

• The CredD daemon provides the API for credential management.
• Must be running for users to utilize the wallet!

We’re bad at naming things, Redux

• Want to store a credential?

• Want to delete a credential?

• Want to query a credential?

• Want to list your credentials?

Use condor_store_cred

Use condor_store_cred

Use condor_store_cred

Too bad!

Credential Management Data Model

Service A Service B Service C

Credmon 1 (type: OAuth2) Credmon 2
(type: KRB5)

Only one
credmon per
type is permitted

Admin
View

User/Job
View

Handle I Handle II Handles are
optional

Our Complete Taxonomy

Tokens in HTCSS

Authorization Credential
Management

IDTOKENS SCITOKENS

OAuth2

Local Issuer

Vault

Kerberos

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2030508 and OAC-2114989. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

