Modelling Heavy Neutral Leptons in GENIE: the BeamHNL module

Path to Dark Sector Discoveries at Neutrino Experiments 06/June/2023, Colorado State University, Fort Collins John Plows

(Reference: K-J. Plows and Xianguo Lu, *Phys Rev D* 107 (2023) 055003)

Outline

- What are HNL?
- The BeamHNL module
 - Overview
 - Inputs:
 - Beamline simulation
 - Detector location
 - Detector geometry
 - Configuring BeamHNL for physics
 - Modelling:
 - Flux prediction
 - Decay & polarisation
 - Vertex positioning & timing
 - POT estimation

WARWICK

- Output: The GENIE event record
- Feature preview: theory input for BeamHNL

IF YOU KEEP SAYING "BEAR WITH ME FOR A MOMENT", PEOPLE TAKE A WHILE TO FIGURE OUT THAT YOU'RE JUST SHOWING THEM RANDOM SLIDES.

Standard Model of Elementary Particles

6 June 2023

Standard Model of Elementary Particles

6 June 2023

 $\mathcal{L} \supset -\frac{1}{2} \bar{\psi} \gamma^{\mu} D_{\mu} \psi$, where ψ satisfies the Dirac equation: $(i\gamma^{\mu}D_{\mu}-m)\psi=0$ Weak force contains vector (V) and axial (A) currents: $j_V^{\mu} = \bar{\psi}\gamma^{\mu}\psi, j_A^{\mu} = \bar{\psi}\gamma^{\mu}\gamma^5\psi$ (maximal parity violation + negative helicity $\Rightarrow V - A$)

Continuity:

$$\partial_{\mu}j_{V}^{\mu} = 0 \checkmark$$
$$\partial_{\mu}j_{A}^{\mu} = 2im\bar{\psi}\gamma^{5}\psi = 0 \Rightarrow \mathbf{m} = \mathbf{0}$$

3

[Lee Grodzins holding the setup for the measurement of neutrino helicity, September 1958. Taken from *Nucl. Phys. B* 229 (2012) 5]

In the Standard Model, the neutrino is by construction massless.

2015 Nobel Prize in Physics:

Neutrino oscillations

In the Standard Model, the neutrino is by construction massless.

6 June 2023

But neutrinos oscillate: \Rightarrow they have mass!

6 June 2023 WARWICK

What are HNL?

- Naturally motivated extension to Standard Model
 - Light neutrinos $v_{1,2,3}$ have <u>at least 2 non-zero masses</u>
 - Admixture with regular "flavour" eigenstates v_{α} as $v_{\alpha} = \sum_{i=1,2,3} U_{\alpha i} v_i + \sum_{j \in J} U_{\alpha j} N_j$

- HNL: new mass eigenstates
 - Mass $\mathcal{O}(\leq \text{TeV}/c^2)$ in vMSM "neutrino minimal SM"
 - Can explain:
 - Active neutrino mass!
 - Dark matter candidate!
 - Matter-antimatter asymmetry!

WARWICK

(see T. Asaka et al, *Phys. Lett. B* 631 (2005) 4, A.Boyarsky et al, *PPNP* 104 (2019) 1)

6 June 2023

 O(100 MeV/c² – TeV/c²) HNL decay to visible signatures in detectors

 Assume <u>one heavy neutrino</u> eigenstate N₄ as in K. Abe et al (T2K), <u>Phys. Rev. D 100 (2019) 052006</u>

• Parameter space: $\left\{ M_{N_4}, |U_{e4}|^2, |U_{\mu4}|^2, |U_{\tau4}|^2 \right\} \equiv \left\{ M_{N_4}, |U_{\alpha4}|^2 \right\}$

- Effective field theory describing low-energy HNL (GeV range) as in P. Coloma et al, <u>EP/C 81 (2021) 78</u>
 - HNL interact directly with mesons, valid up to ~ EW scale
 - Lagrangian available in <u>FeynRules model database</u>

experiment/	lab	beam type	detector	detector	detector decay	distance	N _{pot}	timescale
proposal			technology	transverse	volume	from		
				dimensions	length	dump		
NA62-K	CERN	n 400 GeV	spectrometer	$A = \pi r^2 r = 1 m$	~ 80 m	~100 m	5.1019	by (2032_2038)
NA62-dump	CERN	p, 400 GeV	spectrometer	$A = \pi r^2$, $r = 1$ m	~ 80 m	$\sim 100 \text{ m}$ $\sim 100 \text{ m}$	5.1019	by $(2032 - 2038)$
SUADOWS	CERN	p, 400 GeV	spectrometer	$25 \times 25 \text{ m}^2$	$\sim 30 \text{ m}$	~100 m	5.1019	by $(2032 - 2038)$
SHADOWS	CERN	p, 400 GeV	spectrometer	2.5×2.5 m	~ 20 m	~ 10 m	5·10 ⁻⁰	by (2032-2038)
SHIP	CERN	p, 400 GeV	spectrometer	5×10 m*	~ 50 m	~ 45 m	2.10	
T2K	J-PARC	p, 30 GeV	composite w/ GArTPC	$\sim 3.3 \mathrm{m}^2$	~ 1.7 m	280 m	$3.8 \cdot 10^{21}$	2010-2021
T2K-II	J-PARC	p, 30 GeV	composite w/ GArTPC	$\sim 3.3 {\rm m}^2$	~ 3.6 m	280 m	$+10 \cdot 10^{21}$	2022-2026
Hyper-K	J-PARC	p, 30 GeV	composite w/ GArTPC	~ 3.3 m ²	~ 3.6 m	280 m	$2.70 \cdot 10^{22}$	by 2038
SBND	FNAL	p, 8 GeV	LArTPC	16 m ²	5 m	110 m	$10 \cdot 10^{20}$	2023-2027
MicroBooNE	FNAL	p, 8/120 GeV	LArTPC	6 m ²	10.4 m	463 m/100 m	$1.5 \cdot 10^{21} / 2.2 \cdot 10^{21}$	2015-2021
ArgoNeuT	FNAL	p, 120 GeV	LArTPC	0.2 m ²	0.9 m	318 m	$1.25 \cdot 10^{20}$	2009-2010
DUNE ND	FNAL	p, 120 GeV	LAr/GAr TPC	$\sim 12 \text{ m}^2$	~5 m	574 m	$\gtrsim 1.47 \cdot 10^{22}$	~2030-2040
DarkQuest	FNAL	p, 120 GeV	spectrometer	$2 \times 4 \text{ m}^2$	20 m	5 m	1 · 10 ¹⁸	2024-2025

No positive detection yet...

Shaded areas: published results Unshaded areas: sensitivities of future analyses

A. M. Abdullahi et al, <u>I Phys G 50 (2023) 020501</u>

UNIVERSITY OF WARWICK

Version: 3.4.0

Tag: R-3_04_00, Released: 10 March 2023, Status: pro

Improvements over 3.2.2

(Important contributions by non-GENIE authors are especially acknowledged in the text below)

New and/or updated physics models:

Addition of a spectral function-like approach for binding energies. Contribution by Steven Dolan and Laura Munteanu. [GENIE pull request #249].

New comprehensive model configurations and tunes:

Added CMC desired by SBN and DUNE experiments: AR23_20i_00_000. [Readme file].

Beyond Standard model:

Addition of Beam-produced Heavy Neutral Leptons. Contribution by John Plows (Oxford). [GENIE pull request #223]

Other improvements / bug fixes:

- Fix in HAIntranuke about random number generation. [GENIE pull request #241].
- Fix in the hadronisation rotation. Contribution by Qiyu Yan . [GENIE pull request #264].

The BeamHNL module

- An experiment-agnostic, configurable HNL generation application for accelerator neutrinos
- Goals:
 - 1. User flexibility: ease of use <u>and</u> integration with simulation
 - 2. Generality: for use with many beamlines, detectors

3 coordinate systems:

- **NEAR** ("global" system with *z* horizontal at target)
- **BEAM** (same origin as NEAR but rotated to match beamline)
- USER (the detector's internal coordinate system)

Can transform between two coordinate systems using **1 vector of translations** and **1 vector of rotations**

Job runtime parameters controlled by single configuration file

- Script/batch friendly
- Storable for reproducibility
- Transparent

User passes arguments such as HNL mass, channels to simulate the decays of HNL into, detector location, flux-calculation switches...

An example can be found in

\$GENIE/src/contrib/beamhnl/ CommonHNL_DEMO.xml

WARWICK

Descriptions of the entries can be found in \$GENIE/config/BeamHNLGenerator.xml

6 June 2023

ParameterSpace block: specify what HNL mass / mixings / nature you want

<param type="vec-double" name="HNL-LeptonMixing" delim=";"> 1.0e-7 ; 1.0e-7 ; 0.0 </param>

```
<param type="bool"
<!-- 3-body decays -->
<param type="bool" name="HNL-3B_nu_nu_nu"> true </param>
<param type="bool" name="HNL-3B_nu_mu_mu"> false </param>
<param type="bool" name="HNL-3B_nu_e_e"> false </param>
<param type="bool" name="HNL-3B_nu_mu_e"> false </param>
<param type="bool" name="HNL-3B_nu_pi0"> false </param>
<param type="bool" name="HNL-3B_mu_pi_pi0"> false </param>
</param type="bool" name="HNL-3B_mu_pi_pi0"> false </param>
</param type="bool" name="HNL-3B_nu_pi0_pi0"> false </param>
</param type="bool" name="
```

<param type="double" name="HNL-Mass"> 0.200 </param> <!-- GeV -->

<param type="bool" name="HNL-Majorana"> false </param>

<param type="bool" name="GetCMFrameInstead"> false </param>

<param_set name="CoordinateXForm">

<param_set name="ParameterSpace">

</param_set>

<param_set name="Integrations of the second second

<param type="bool'

<param type="bool'

```
<param type="vec-double" name="Near2Beam_R" delim=";"> 0.0 ; 0.0 ; -0.05830 </param> <!-- rad -->
<!-- Euler angles, extrinsic x-z-x = 1-2-3, RM * BEAM = USER, RM = Rx(1) * Rz(2) * Rx(3). -->
<!-- Describes rotation of BEAM wrt NEAR frame -->
<param type="vec-double" name="Near2User_T" delim=";"> 0.0 ; -60.0 ; 1000.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</parametable</parametable</parametable</parametable</parametable</parametable</parametable</p>
```

Job runtime parameters controlled by single configuration file

- Script/batch friendly
- Storable for reproducibility
- Transparent

User passes arguments such as HNL mass, channels to simulate the decays of HNL into, detector location, flux-calculation switches...

An example can be found in

\$GENIE/src/contrib/beamhnl/ CommonHNL_DEMO.xml

WARWICK

Descriptions of the entries can be found in \$GENIE/config/BeamHNLGenerator.xml

6 June 2023

<param type="bool" name="HNL-2B_mu_pi"> true </param> <param type="bool" name="HNL-2B_e_pi"> true </param>

<param type="bool" name="HNL-2B_nu_pi0"> false </param>

<param type="bool" name="HNL-3B_nu_nu_nu"> true </param>

<param type="bool" name="HNL-3B_nu_e_e"> false </param>

<param type="bool" name="HNL-3B_nu_mu_e"> false </param>

<param type="bool" name="HNL-3B_e_pi_pi0"> false </param>

<param type="bool" name="HNL-3B_mu_pi_pi0"> false </param>
<param type="bool" name="HNL-3B_nu_pi0_pi0"> false </param>

<param type="bool" name="HNL-3B_nu_mu_mu"> false </param>

<param type="bool' </param_set>

</param_set>

<!-- 2-body decays -->

<!-- 3-body decays -->

InterestingChannels block: specify which channels you want to simulate.

; 0.0 </param>

15

(in this example: $N_4 \rightarrow \ell^{\mp} \pi^{\pm}$, $N_4 \rightarrow \nu \nu \nu$ events will be kept in the event record)

```
coaram_set name="CoordinateXForm">
```

<param_set name="InterestingChannels">

```
<cpre>cyaram type="vec-double" name="Near2Beam_R" delim=";"> 0.0 ; 0.0 ; -0.05830 </param> <!-- rad -->
<!-- Euler angles, extrinsic x-z-x = 1-2-3, RM * BEAM = USER, RM = Rx(1) * Rz(2) * Rx(3). -->
<!-- Describes rotation of BEAM wrt NEAR frame -->
cyaram type="vec-double" name="Near2User_T" delim=";"> 0.0 ; -60.0 ; 1000.0 </pram> <!-- m -->
<!-- USER origin in NEAR coordinates -->
cyaram type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </pram> <!-- m -->
<!-- USER origin in NEAR coordinates -->
cyaram type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </pram> <!-- m -->
<!-- USER origin in NEAR coordinates -->
cyaram type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </pram> <!-- m -->
<!-- USER origin in NEAR coordinates -->
cyaram type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 /param>
<!-- m -->
```

Job runtime parameters controlled by single configuration file

- Script/batch friendly
- Storable for reproducibility
- Transparent

User passes arguments such as HNL mass, channels to simulate the decays of HNL into, detector location, flux-calculation switches...

An example can be found in

\$GENIE/src/contrib/beamhnl/ CommonHNL_DEMO.xml

WARWICK

Descriptions of the entries can be found in \$GENIE/config/BeamHNLGenerator.xml

6 June 2023

<param_set name="ParameterSpace"> 15 <param type="double" name="HNL-Mass"> 0.200 </param> <!-- GeV --> <param type="vec-double" name="HNL-LeptonMixing" delim=";"> 1.0e-7 ; 1.0e-7 ; 0.0 </param> <param type="bool" name="HNL-Majorana"> false </param>

<param type="bool" name="GetCMFrameInstead"> false </param>
</param_set>

<param_set name="Inte <!-- 2-body decays <param type="bool" <param type="bool" <param type="bool" <!-- 3-body decays <param type="bool" <param type="bool"</param_set>

CoordinateXForm block: Provide vectors describing detector location.

In this example, detector centre at: $(x_{\text{NEAR}}, y_{\text{NEAR}}, z_{\text{NEAR}}) = (0, -60, 1000) \text{ m}$ $(x_{\text{USER}}, y_{\text{USER}}, z_{\text{USER}}) = \mathbf{0}$ Beam rotated by 58.3 mrad down in $(y_{\text{NEAR}}, z_{\text{NEAR}})$ plane

<param_set name="CoordinateXForm">

<param type="vec-double" name="Near2Beam_R" delim=";"> 0.0 ; 0.0 ; -0.05830 </param> <!-- rad -->
<!-- Euler angles, extrinsic x-z-x = 1-2-3, RM * BEAM = USER, RM = Rx(1) * Rz(2) * Rx(3). -->
<!-- Describes rotation of BEAM wrt NEAR frame -->
<param type="vec-double" name="Near2User_T" delim=";"> 0.0 ; -60.0 ; 1000.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="Near2User_R" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="DetCentre_User" delim=";"> 0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param

- Pseudoscalar meson decay $P \rightarrow N_4 + \ell$ (+ pseudoscalar D)
 - Lorentz boost from parent-rest frame into lab frame dominant factor
 - For a <u>massive neutrino</u>

$$\mathcal{B} = \frac{E_{\text{N4}}}{E_{\text{N4}}^{(\text{CM})}} = \frac{1}{\gamma_P (1 - \beta_P \beta_{\text{N4}} \cos \theta_{\text{det}})} (1), \beta_{\text{N4}} \text{ lab - frame}$$
(cf. $\beta_{\text{N4}} = 1$ for SM)

Collimation effect:

$$\tan \theta = \frac{q_{\rm N4} \sin \Theta}{\gamma_P \left(\beta_P E_{\rm N4}^{\rm (CM)} + q_{\rm N4} \cos \Theta\right)} (2)$$

HNL are more collimated with their parents than SM neutrinos. The flux depends much more strongly on parent kinematics!

6 June 2023

John Plows - BeamHNL simulation

OXFORD

WARWICK

6 June 2023

WARWICK 6 June 2023

OXFORD

WARWICK

∀ HNL know production point D and momentum $p \Rightarrow$ Calculate entry, exit points Е, Х

Assign decay vertex V by exponential decay between E and X

John Plows - BeamHNL simulation

L D

Z

OXFORD

WARWICK

6 June 2023

 \forall HNL know production point D and momentum $p \Rightarrow$ Calculate entry, exit points E, X

Assign decay vertex V by exponential decay between E and X

Total travel distance *L* and velocity β known \Rightarrow calculate delay wrt SM neutrino

How do we calculate rates?

Rates (in POT equivalent) depend on many factors:

- Directly on HNL mass / mixing
- Flux simulation (parent collimation)
- Geometry file (detector size effect) + detector location
- Physics assumptions (Dirac vs Majorana nature of neutrino)

Solution: Let user simulate as many events as they want and account for the POT it would take to make them!

Pass the expected NPOT per event as a weight in GENIE

Current Event Number: 8000 Approximate total processing time: 15.11 s Approximate processing time/event: 0.00188851 s

Assuming Dirac HNL, M = 100 MeV, $e: \mu: \tau = 1:1:0$, $|U_{\alpha 4}|^2 = 10^{-8}$

	 GENIE GHEP Event Record [print level: 3] !										
	Idx	Name	Ist	PDG	Mother	Daughter	Px	Ру	Pz	E	m
	0 1 2 3	HNLBar nu_e_bar nu_mu_bar nu_tau_bar	0 -20000 1 1 1 1	920000 -12 -14 -16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1 3 -1 -1 -1 -1 -1 -1	-0.000 -0.017 -0.019 0.035	-0.029 -0.008 -0.034 0.013	0.471 0.047 0.293 0.131	0.483 0.051 0.296 0.136	0.100 0.000 0.000 0.000 0.000
Fin-Init: -0.000 0.000 -0.000 -0.000											
	Vertex: HNLBar @ (x = -0.37425 m, y = -0.34240 m, z = -0.37426 m, t = 7.393239e-						08 s)				
	Err flag [bits:15->0] : 0000000000000000000000000000000000										
	sig(E	v) = 0.0000	00e+00 cm^2	dsig(E	v;{K_s})/(dK = 0.	.00000e+00 c	cm^2/{K}	Weight =	51	. 56644

This signal event took 51.6e+20 POT

Coming soon to BeamHNL...

5.4 Discrepancies with previous literature P. Coloma et al, EPJC 81 (2021) 78

The decay widths of a HNL into mesons, neutrinos and leptons have been derived several times in previous literature; for an incomplete list see e.g. Refs. [28,39,49,53,66,73]. Here we summarize the main discrepancies and differences found between our results and some of these works:

Implementing a "tune system" for BeamHNL : accept theory input for:

- HNL production kinematic scaling factors
- HNL decay widths to channels

Goals:

- User-friendly
- Storable and persistent
- Easily modifiable

VORK IN PROGRES

<param_set name="Default">

<!-- Who did the calculations? -->

<param type="string" name="Calculation"> ColomaEtAl_EFT </param>
<param type="string" name="Reference"> Coloma et al, EPJ C 81 (2021) 78 </param>

<!-- Define knots for HNL masses here -->

<param type="vec-double" name="Masses" delim=";">

0.000 ; 0.005 ; 0.010 ; 0.015 ; 0.020 ; 0.025 ; 0.030 ; 0.035 ; 0.040 ; 0.045 ; 0.050 ; 0.055 ; 0.060 ; 0.065 ; 0.070 ; 0.075 ; 0.080 ; 0.085 ; 0.090 ; 0.095 ; 0.100 ; 0.105 ; 0.110 ; 0.115 ; 0.120 ; 0.125 ; 0.130 ; 0.135 ; 0.140 ; 0.145 ; 0.150 ; 0.155 ; 0.160 ; 0.165 ; 0.170 ; 0.175 ; 0.180 ; 0.185 ; 0.190 ; 0.195 ; 0.200 ; 0.205 ; 0.210 ; 0.215 ; 0.220 ; 0.225 ; 0.230 ; 0.235 ; 0.240 ; 0.245 ; 0.250 ; 0.255 ; 0.260 ; 0.265 ; 0.270 ; 0.275 ; 0.280 ; 0.285 ; 0.290 ; 0.290 ; 0.295 ; 0.300 ; 0.305 ; 0.310 ; 0.315 ; 0.320 ; 0.325 ; 0.330 ; 0.335 ; 0.340 ; 0.345 ; 0.350 ; 0.405 ; 0.410 ; 0.415 ; 0.420 ; 0.425 ; 0.430 ; 0.435 ; 0.440 ; 0.445 ; 0.400 ; 0.455 ; 0.460 ; 0.465 ; 0.470 ; 0.475 ; 0.480 ; 0.485 ; 0.490

</param>

WARWICK 6 June 2023

Theory input handled through xml files in dedicated HNL tune directory

<!-- N4 -> v v v -->

<decayChannel name="nu_nu_nu">

<param type="vec-double" name="Rates 0" delim=";"> ; 2.14224e-25 ; 6.8558e-24 ; 5.20612e-23 ; 2.19386e-22 ; <!-- 0 - 20 --> 0.000 6.69511e-22 ; 1.66596e-21 ; 3.60079e-21 ; 7.02034e-21 ; 1.26509e-20 ; 2.14224e-20 ; 3.45042e-20 ; 5.33107e-20 ; 7.95472e-20 ; 1.15225e-19 ; 1.62691e-19 ; 2.24651e-19 ; 3.04195e-19 ; 4.04828e-19 ; 5.30489e-19 ; 6.8558e-19 ; 8.74993e-19 ; 1.10413e-18 ; 1.37895e-18 ; 1.70594e-18 ; <!-- 100 - 120 --> 2.09222e-18 ; 2.54551e-18 ; 3.07416e-18 ; 3.68721e-18 ; 4.39438e-18 ; 5.20612e-18 ; 6.13361e-18 ; 7.18882e-18 ; 8.38451e-18 ; 9.73425e-18 ; 1.12525e-17 ; 1.29545e-17 ; 1.48565e-17 ; 1.69756e-17 ; 1.933e-17 ; 2.19386e-17 ; 2.48215e-17 ; 2.79998e-17 ; 3.14956e-17 ; 3.53323e-17 ; <!-- 200 - 220 --> 3.9534e-17 ; 4.41263e-17 ; 4.91357e-17 ; 5.45901e-17 ; 6.05185e-17 ; 6.69511e-17 ; 7.39195e-17 ; 8.14563e-17 ; 8.95957e-17 ; 9.83832e-17 ; 1.07825e-16 ; 1.17991e-16 ; 1.28909e-16 ; 1.4062e-16 ; 1.53168e-16 ; 1.66596e-16 ; 1.80949e-16 ; 1.96276e-16 ; 2.12623e-16 ; 2.30042e-16 ; <!-- 300 - 320 --> 2.48585e-16 ; 2.68304e-16 ; 2.89256e-16 ; 3.11496e-16 ; 3.35084e-16 ; 3.60079e-16 ; 3.8654e-16 ; 4.14544e-16 ; 4.44142e-16 ; 4.75408e-16 ; 5.0841e-16 ; 5.4322e-16 ; 5.79911e-16 ; 6.18559e-16 ; 6.5924e-16 ; 7.02034e-16; 7.47021e-16; 7.94287e-16; 8.43915e-16; 8.95993e-16; <!-- 400 - 420 --> 9.50611e-16 ; 1.00786e-15 ; 1.06784e-15 ; 1.13063e-15 ; 1.19632e-15 ; 1.26509e-15 ; 1.33695e-15 ; 1.41204e-15 ; 1.49047e-15 ; 1.57234e-15 ; 1.65778e-15 ; 1.74688e-15 ; 1.83978e-15 ; 1.93659e-15 </param>

cparam type="string" name="Scaling_Dirac_0 "> (x[0]+x[1]+x[2])/3.0 /param>
cparam type="string" name="Scaling_Majorana_0"> 2.0*(x[0]+x[1]+x[2])/3.0 /param>

</decayChannel>

For each channel, identify component **with definite scaling behaviour** e.g. $\propto (\Sigma_{\alpha} |U_{\alpha 4}|^2)^2, |U_{\ell 4}|^2$

Specify a desired mass partition and the decay width of each component at $|U_{\ell 4}|^2 = 1, \ell = e, \mu, \tau$ Specify scaling behaviour as a TFormula

Group components into `decayChannel` objects in xml file

Theory input handled through xml files in dedicated HNL tune directory

<!-- N4 -> v v v -->

<decayChannel name="nu_nu_nu">

```
<param type="vec-double" name="Rates 0" delim=";">
             ; 2.14224e-25 ; 6.8558e-24 ; 5.20612e-23 ; 2.19386e-22 ; <!-- 0 - 20 -->
  0.000
 6.69511e-22; 1.66596e-21; 3.60079e-21; 7.02034e-21; 1.26509e-20;
 2.14224e-20 ; 3.45042e-20 ; 5.33107e-20 ; 7.95472e-20 ; 1.15225e-19 ;
 1.62691e-19 ; 2.24651e-19 ; 3.04195e-19 ; 4.04828e-19 ; 5.30489e-19 ;
 6.8558e-19 ; 8.74993e-19 ; 1.10413e-18 ; 1.37895e-18 ; 1.70594e-18 ; <!-- 100 - 120 -->
 2.09222e-18 ; 2.54551e-18 ; 3.07416e-18 ; 3.68721e-18 ; 4.39438e-18 ;
 5.20612e-18 ; 6.13361e-18 ; 7.18882e-18 ; 8.38451e-18 ; 9.73425e-18 ;
 1.12525e-17 ; 1.29545e-17 ; 1.48565e-17 ; 1.69756e-17 ; 1.933e-17 ;
 2.19386e-17 ; 2.48215e-17 ; 2.79998e-17 ; 3.14956e-17 ; 3.53323e-17 ; <!-- 200 - 220 -->
 3.9534e-17 ; 4.41263e-17 ; 4.91357e-17 ; 5.45901e-17 ; 6.05185e-17 ;
 6.69511e-17 ; 7.39195e-17 ; 8.14563e-17 ; 8.95957e-17 ; 9.83832e-17 ;
 1.07825e-16 ; 1.17991e-16 ; 1.28909e-16 ; 1.4062e-16 ; 1.53168e-16 ;
 1.66596e-16 ; 1.80949e-16 ; 1.96276e-16 ; 2.12623e-16 ; 2.30042e-16 ; <!-- 300 - 320 -->
 2.48585e-16 ; 2.68304e-16 ; 2.89256e-16 ; 3.11496e-16 ; 3.35084e-16 ;
 3.60079e-16 ; 3.8654e-16 ; 4.14544e-16 ; 4.44142e-16 ; 4.75408e-16 ;
 5.0841e-16 ; 5.4322e-16 ; 5.79911e-16 ; 6.18559e-16 ; 6.5924e-16 ;
 7.02034e-16; 7.47021e-16; 7.94287e-16; 8.43915e-16; 8.95993e-16; <!-- 400 - 420 -->
 9.50611e-16 ; 1.00786e-15 ; 1.06784e-15 ; 1.13063e-15 ; 1.19632e-15 ;
 1.26509e-15 ; 1.33695e-15 ; 1.41204e-15 ; 1.49047e-15 ; 1.57234e-15 ;
 1.65778e-15 ; 1.74688e-15 ; 1.83978e-15 ; 1.93659e-15
</param>
```

<param type="string" name="Scaling_Dirac_0 "> (x[0]+x[1]+x[2])/3.0 </param>
<param type="string" name="Scaling_Majorana_0"> 2.0*(x[0]+x[1]+x[2])/3.0 </param>

</decayChannel>

For production channels, specify kinematic scaling factors for each parent, and the masses to evaluate for each parent.

 $\Gamma(M,|U_{\alpha4}|^2)=\mathcal{K}(M)\cdot |U_{\alpha4}|^2$

Reference model: *EPJ C* 81 (2021) 78

Thank you!

Some useful links:

BeamHNL paper (PRD): <u>Phys Rev D 107 (2023) 055003</u>

BeamHNL principal branch: <u>kjplows/Generator</u>

Preview branch with theory input: <u>kjplows/Generator at multiLagrangian</u>

Backup

P. Ballett et al, *JHEP* 2020 (2020) 111

Acceptance correction

- Collimation effect \Rightarrow <u>HNL not guaranteed to hit detector</u>
- Parents have to be well-focused or HNL cannot "correct course" enough to reach a point
- Back-emitted HNL may also hit detector if parent focused enough!

6 June 2023 WARWICK

