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Motivation

A. Andronic et al., PLB 697, 203 (2011) and 
references therein for the model, figure from A. 
Andronic, private communication

• Explore QCD and QCD 
inspired model predictions
for (unusual) multi-baryon 
states

• Search for rarely produced
anti- and hyper-matter

• Test model predictions, e.g. 
thermal and coalescence

àUnderstand production
mechanisms
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Introduction

Plot by S. Bass, Duke University; http://www.phy.duke.edu/research/NPTheory/QGP/transport/evo.jpg

Cartoon of a Ultra-relativistic heavy-ion collision
Left to right: 
- the two Lorentz contracted nuclei approach, 
- collide, 
- form a Quark-Gluon Plasma (QGP), 
- the QGP expands and hadronizes, 
- finally hadrons rescatter and freeze

Workshop Univ. Tokyo  - Benjamin Dönigus 



Introduction

The fireball evolution: 
- Starts with a “pre-equilibrium state” 
- Forms a Quark-Gluon Plasma phase (if T is larger than Tc)
- At chemical freeze-out, Tch, hadrons stop being produced
- At kinetic freeze-out, Tfo, hadrons stop scattering

Workshop Univ. Tokyo  - Benjamin Dönigus 
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Lattice QCD results

Workshop Univ. Tokyo  - Benjamin Dönigus 

Lattice QCD
tells us where
to expect the
phase
transition

Critical energy density:
εC = 0.34 ± 0.16 GeV/fm3

Critical temperature
TC = (156.5 ± 1.5) MeV

A. Bazavov et al. (hotQCD) PLB 795 (2019) 15
Similar results: S. Borsányi et al. (Budapest-Wuppertal group) PRL 125 (2020) 052001



Thermal model

Workshop Univ. Tokyo  - Benjamin Dönigus 

• Statistical (thermal) model with only three parameters able
to describe particle yields (grand chanonical ensemble)

- chemical freeze-
out temperature Tch

- baryo-chemical
potential µB

- Volume V

à Using particle
yields as input to
extract parameters



Energy dependence
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Thermal model fits show limiting temperature: Tlim = (159 ± 2) MeV

A. Andronic et al., PLB 673 (2009) 142, updated



Predicting yields of bound
states

A. Andronic et al., PLB 697 (2011) 203

Key parameter at LHC 
energies:
chemical freeze-out 
temperature Tch
Strong sensitivity of
abundance of nuclei
to choice of Tch due to:
1. large mass m
2. exponential dependence of
the yield ~ exp(-m/Tch)
à Binding energies small
compared to Tch

Workshop Univ. Tokyo  - Benjamin Dönigus 



Coalescence

J. I. Kapusta, PRC 21, 1301 (1980)

Nuclei are formed by protons
and neutrons which are
nearby and have similar
velocities (after kinetic freeze-
out)

Produced nuclei
➜ can break apart
➜ created again by final-state
coalescence
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Large Hadron Collider at CERN
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ALICE

Large Hadron Collider at CERN
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Experiment: ALICE
• STAR
• ALICE
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Interlude: Centrality
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Central Pb-Pb collision:
High multiplicity = large dN/dh
High number of tracks
(more than 2000 tracks in the detector)

Peripheral Pb-Pb collision:
Low multiplicity = small dN/dh
Low number of tracks
(less than 100 tracks in the detector) 



(Anti-)Nuclei
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Particle Identification

Low momenta:
Nuclei are identified using
the dE/dx measurement in the
Time Projection Chamber (TPC)

Higher momenta:
Velocity measurement with the
Time-of-Flight (TOF) detector is
used to calculate the m2

distribution
Workshop Univ. Tokyo  - Benjamin Dönigus 



For the full statistics
of 2011 ALICE 
identified 10 Anti-
Alphas using
TPC and TOF

STAR observed the
Anti-Alpha in 2010:
Nature 473, 353 (2011)

Anti-Alpha

Workshop Univ. Tokyo  - Benjamin Dönigus 



Deuterons
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Pb-Pb

pp

ALICE-PUBLIC-2017-006

• pT spectra getting harder for more central collisions (from pp to
Pb-Pb) à showing clear radial flow

• Blast-Wave fits describe the data in Pb-Pb very well
• No hint for radial flow in pp



(Anti-)Deuteron ratio

: -ratios consistent with unity, as expected
Workshop Univ. Tokyo  - Benjamin Dönigus 



Combined Blast-Wave fit

• Simultaneous Blast-
Wave fit of p+, K+, p, 
d, t, 3He and 4He 
spectra for central
Pb-Pb collisions
leads to values for
<b> and Tkin close to
those obtained when
only p,K,p are used

Workshop Univ. Tokyo  - Benjamin Dönigus 

ALICE Collaboration, arXiv:1910.07678, Phys.Rev.C 101 (2020) 044907

• All particles are described rather well with this simultaneous fit 
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• Production of (anti-) 
nuclei is follwing an 
exponential, and
decreases with
mass as expected
from thermal model

• In Pb-Pb the
„penalty factor“ for
each additional 
baryon ~300 (for
particles and anti-
particles)

Mass dependence

ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018) 
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• Production of (anti-) 
nuclei is follwing an 
exponential, and
decreases with
mass as expected
from thermal model

• In Pb-Pb the
„penalty factor“ for
each additional 
baryon ~300, in p-
Pb ~600 and in pp 
~1000

Mass dependence



d/p vs. multiplicity

Workshop Univ. Tokyo  - Benjamin Dönigus 

d/p ratio described by applying afterburner on Hybrid 
UrQMD simulations – similar results for thermal approach

As shown by R. Stock at QM2018,
meanwhile coalsecence published: S. Sombun et al., Phys.Rev.C 99 (2019) 014901



d/p vs. multiplicity

d/p ratio rather well described by coalescence and
(canonical) thermal model

Workshop Univ. Tokyo  - Benjamin Dönigus 
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3He/p vs. multiplicity

3He/p and 3H/p ratios are similarily well described by
coalescence and (canonical) thermal model

Workshop Univ. Tokyo  - Benjamin Dönigus 
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ratios vs. (low) multiplicity

• d/p ratio rather well described by coalescence and
(canonical) thermal model

• Some tension for 3He/p at low pT

Workshop Univ. Tokyo  - Benjamin Dönigus 

ALICE Collaboration, arXiv:2112.00610
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ratios vs. multiplicity

• d/p ratio rather well described by coalescence and
(canonical) thermal model

• Some tension for 3He/p and 3H/p over pT

Workshop Univ. Tokyo  - Benjamin Dönigus 
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Thermal model

• Different model implementations describe the production probability, 
including light nuclei and hyper-nuclei, rather well at a temperture of
about Tch =156 MeV

Workshop Univ. Tokyo  - Benjamin Dönigus 
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• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei

Thermal model

Workshop Univ. Tokyo  - Benjamin Dönigus 
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A. Andronic et al., Phys.Lett.B 797 (2019) 134836; 
Nature 561 (2018) 7723, 321; Phys.Lett.B 697 (2011) 203; 
Phys.Lett.B 792 (2019) 304
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BD, G. Röpke, D. Blaschke, 
Phys. Rev. C 106 (2022) 044908
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• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei
at LHC

Thermal model
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V. Vovchenko, BD, B. Kardan, M. Lorenz, 
H. Stoecker, Phys.Lett.B 809 (2020) 135746



• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
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• Seems to not be the
case for (hyper-)nuclei

Thermal model
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A. Andronic et al., Phys.Lett.B 797 (2019) 134836; 
Nature 561 (2018) 7723, 321; Phys.Lett.B 697 (2011) 203; 
Phys.Lett.B 792 (2019) 304

BD, G. Röpke, D. Blaschke, 
Phys. Rev. C 106 (2022) 044908
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Anti-nuclei absorption

• Absorption of Anti-3He measured with two different methods
using the ALICE experiment as absorber

• GEANT4 does a really good job

Workshop Univ. Tokyo  - Benjamin Dönigus 

ALICE Collaboration, arXiv:2202.01549



Anti-3He flux near earth

• Measured absorption used to calculate the flux near earth, 
before and after solar modulation

• Large reduction of uncertainties due to ALICE measurement
Workshop Univ. Tokyo  - Benjamin Dönigus 
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Anti-3He flux near earth

• Measured absorption used to calculate the flux near earth, 
before and after solar modulation

• Large reduction of uncertainties due to ALICE measurement
Workshop Univ. Tokyo  - Benjamin Dönigus 

ALICE Collaboration, arXiv:2202.01549



Hypernuclei
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Hypertriton
Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)
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Hypertriton
Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)

Workshop Univ. Tokyo  - Benjamin Dönigus 

P. Braun-Munzinger, BD, Nucl. Phys. A 987 (2019) 144



Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)

Ultim
ate

 halo
nucle

us:

<r
2 dL

> = 1
0.6

 fm

Hypertriton
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P. Braun-Munzinger, BD, Nucl. Phys. A 987 (2019) 144



Hypertriton Identification
Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)
à Radius of about 10.6 fm
Decay modes:

+ anti-particles
à Anti-Hypertriton first observed by
STAR Collaboration:

Workshop Univ. Tokyo  - Benjamin Dönigus 
Science 328,58 (2010)



Hypertriton signal

• Clear signal reconstructed by decay products
• Spectra can also be described by Blast-Wave model

à Hypertriton flows as all other particles

Workshop Univ. Tokyo  - Benjamin Dönigus 



Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. pT

Workshop Univ. Tokyo  - Benjamin Dönigus 



Fits: different view

Workshop Univ. Tokyo  - Benjamin Dönigus 

• Excellent agreement over
9 orders of magnitude

• Fit of nuclei (d, 3He, 4He):     
Tch=159 ± 5 MeV

• No feed-down for
(anti)(hyper-)nuclei

• charm quarks, out of
chemical equilibrium, 
undergo statistical
hadronization
à only input: number of
ccbar pairs

A. Andronic et al., arXiv:1901.09200
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• Shape of the pT spectra of J/y and hypertriton agree very well, despite
the binding energy of the hypertriton is 2.35 MeV and of the J/y 600 MeV

P. Braun-Munzinger, BD, Nucl. Phys. A 987 (2019) 144



ALICE Collaboration, arXiv:2107.10627, PRL 128 (2022) 252003

Hypertriton in pp & p-Pb

Workshop Univ. Tokyo  - Benjamin Dönigus 

• Hypertriton signal recently also extracted in pp and
p-Pb collisions

• Stronger separation between models as for other particle
ratios, mainly due to the size of the hypertriton



ALICE Collaboration, arXiv:2107.10627, PRL 128 (2022) 252003

Hypertriton in pp & p-Pb
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• Hypertriton signal recently also extracted in pp and
p-Pb collisions

• Stronger separation between models as for other particle
ratios, mainly due to the size of the hypertriton



Hypertriton „Puzzle“

Workshop Univ. Tokyo  - Benjamin Dönigus 

• Recently measured lifetimes are significantly below the
lifetime of the free L à new ALICE results agree with the
world average of
all known
measurements
and with the free
L lifetime

• Most recent
calculations
include „final-state“ 
interaction and
agree well with
the data

BD, Eur. Phys. J 56 (2020) 258
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Binding Energy
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ALICE Collaboration, arXiv:2209.07360, submitted to PRL

• Current studies show a
better constraint and 
small
statistical uncertainties
(will be published soon)

• The value obtained by
this fit is
BL = (102 ± 63 ± 67) keV



Binding Energy
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ALICE Collaboration, arXiv:2209.07360, submitted to PRL

• Current studies show a
better constraint and 
small
statistical uncertainties
(will be published soon)

• The value obtained by
this fit is

• BL = (102 ± 63 ± 67) keV
• Both are compatible with

the theoretical
predictions



Exotica Searches

C. Rappold et al., 
PRC 88, 041001 (2013)

HypHI
Collaboration
observed signals
in the t+p and d+p
invariant mass
distributions

Workshop Univ. Tokyo  - Benjamin Dönigus 



H-Dibaryon

T. Inoue, private communication

Workshop Univ. Tokyo  - Benjamin Dönigus 

• Hypothetical bound state of uuddss (LL) 
• First predicted by Jaffe in a bag model calculation (PRL 195, 38 

+617 (1977)) 
• Recent lattice calculations suggest (Inoue et al., PRL 106, 162001 

(2011) and Beane et al., PRL 106, 162002 (2011)) a bound state 
(20-50 MeV/c2 or 13 MeV/c2)

• Shanahan et al., PRL 107, 092004 (2011)                                         
and Haidenbauer, Meißner, PLB 706, 100                                     
(2011) made chiral extrapolation to a                                           
physical pion mass and got as result:
– the H is unbound by 13±14 MeV/c2

or lies close to the Xp threshold
à Renewed interest in experimental searches

• Most recent lattice QCD result points back to
a weakly bound state (4.56±1.29 MeV/c2): J.R. Green et al.,        
PRL 127 (2021) 242003



Invariant mass analyses of the two hypothetical particles lead to
no visible signal à Upper limits set

Searches for bound states

Workshop Univ. Tokyo  - Benjamin Dönigus 

ALICE Collaboration: PLB 752, 267 (2016)



Search for a bound state of Ln and LL, shows no hint of signal
à upper limits set (for different lifetimes assumed for the bound
states)

Decay length dependence

Workshop Univ. Tokyo  - Benjamin Dönigus 

ALICE Collaboration: PLB 752, 267 (2016)



Comparison with fit

Hypertriton (BL: 130 keV) and Anti-Alpha (B/A: 7 MeV) yields fit well with
the thermal model expectations
à Upper limits of LL and Ln are factors of >25 below the model values

Workshop Univ. Tokyo  - Benjamin Dönigus 

Simplified plot,  CERN Courier (September 2015) 



LL correlations
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ALICE Collaboration: PLB 797 (2019) 134822

• Source determined by pp correlation, such that the LL interaction
can be extracted from the corresponding correlation



LL correlations
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ALICE Collaboration: PLB 797 (2019) 134822

Best value from the scan:

using



Outlook & Summary
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Conclusion

Workshop Univ. Tokyo  - Benjamin Dönigus 

• ALICE@LHC is well suited
to study light                  
(anti-)(hyper-)nuclei and
perform searches for exotic
bound states (A<5)

• Models describe the
(anti-)(hyper-)nuclei data
rather well

• Ratios vs. multiplicity trend
described by both models

• New and more precise data
can be expected in the next
years (e.g. LHC Run 3 just
started)

• ALICE@LHC is well suited to study light (anti-)(hyper-) 
nuclei and perform searches for exotic bound states
(A<5)

• Copious production of loosely bound objects measured
by ALICE as predicted by the thermal model
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Backup
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Lattice QCD results
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Lattice QCD
tells us where
to expect the
phase
transition

Critical energy density:
εC = 0.34 ± 0.16 GeV/fm3

Critical temperature
TC = (154 ± 9) MeV

A. Bazavov et al. (hotQCD) Phys. Rev. D90 (2014) 094503
Similar results from Budapest-Wuppertal group: S. Borsányi et al. JHEP 09 (2010) 073 



Binding Energy
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• Current studies show a
better constraint and 
small
statistical uncertainties
(will be published soon)

• The value obtained by
this fit is

• BL = (102 ± 63 ± 67) keV
• Both are compatible with

the theoretical
predictionsALICE Collaboration, arXiv:2209.07360, submitted to PRL



Binding Energy
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• Preliminary Result for
SQM2019

• Current studies show a
better constraint and
smaller
statistical uncertainties
(will be published
soon)

• The value obtained by
this fit is
BL = 55 ± 62 keV

• Is compatible within
the theoretical
predictions



• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei

Thermal model
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BD, G. Röpke, D. Blaschke, to be submitted

A. Andronic et al., Phys.Lett.B 797 (2019) 134836; 
Nature 561 (2018) 7723, 321; Phys.Lett.B 697 (2011) 203; 
Phys.Lett.B 792 (2019) 304
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Primordial yield, according to quantum state properties
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Final yield after correction from phase shift
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• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei
at LHC

Thermal model
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V. Vovchenko, BD, B. Kardan, M. Lorenz, 
H. Stoecker, Phys.Lett.B 809 (2020) 135746



• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei

• Important for A=4 
hypernuclei !

Thermal model
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Exited states have higher population due to
degeneracy 2J+1:
Sharing yield in fraction 3 : 1
(mass difference is only 1 MeV to about 4GeV/c2)



• Hypernuclei are unique
probes to study nuclear
structure

• Single L-hypernuclei
are major source of
extracting L-N 
interaction

• Correct L-N and L-N-N 
interaction needed to
understand structure of
neutron stars

Hypernuclei

Workshop Univ. Tokyo  - Benjamin Dönigus 

D. Logoteta et al., Astron. Astrophys. 646 (2021) A55



• Hypernuclei are decaying weakly
(about free L lifetime)

• Hypertriton special case: L
separation energy so low that
simple models expect free L
lifetime: d-L system

Hypernuclei

Workshop Univ. Tokyo  - Benjamin Dönigus 
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P. Braun-Munzinger, BD, 
Nucl. Phys. A 987 (2019) 144
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Phys.Rev.C 100 (2019) 3



Expectations
• Run 2 of the LHC ended in 

2018 and for Pb-Pb
collisions factor of about 10 
increase in statistics was 
taken

• Run 3 & Run 4 of LHC will 
deliver much more statistics
(50 kHz Pb-Pb collision rate)

• Upgraded ALICE detector
will be able to cope with the
high luminosity

• TPC Upgrade: GEMs for
continous readout

Workshop Univ. Tokyo  - Benjamin Dönigus 

• ITS Upgrade: less material budget and more precise tracking
for the identification of hyper-nuclei

• Physics which is now done for A = 2 and A = 3 (hyper-)nuclei
will be done for A = 4
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• Run 3 & Run 4 of LHC will deliver much
more statistics (50 kHz Pb-Pb collision
rate)

• Upgraded ALICE detector will be able
to cope with the high luminosity

• TPC Upgrade: GEMs for continous
readout

• ITS Upgrade: less material budget and
more precise tracking for the
identification of hyper-nuclei

• Physics which is now done for A = 2 
and A = 3 (hyper-)nuclei
will be done for A = 4

Workshop Univ. Tokyo  - Benjamin Dönigus 

Expected significance >5s for the full data set to be collected in Run 3 & 4

Expectations
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• Important for A=4 
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Exited states have higher population due to
degeneracy 2J+1:
Sharing yield in fraction 3 : 1
(mass difference is only 1 MeV to about 4GeV/c2)



Feeddown for nuclei

• Excited nuclei contribute only little to yield at the LHC, but 
strongly to baryon dominated region

Workshop Univ. Tokyo  - Benjamin Dönigus 

V. Vovchenko, BD, B. 
Kardan, M. Lorenz, H. 
Stöcker, PLB 809 
(2020) 134756 

Excited nuclei up to
A=5 added to
Thermal-FIST 
package
https://github.com/vlv
ovch/Thermal-FIST

https://github.com/vlvovch/Thermal-FIST


Database
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https://hypernuclei.kph.uni-mainz.de

https://hypernuclei.kph.uni-mainz.de/


Database
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https://hypernuclei.kph.uni-mainz.de

https://hypernuclei.kph.uni-mainz.de/
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Binding Energy
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• Preliminary Result for
SQM2019

• Current studies show a
better constraint and
smaller
statistical uncertainties
(will be published
soon)

• The value obtained by
this fit is
BL = 55 ± 62 keV
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• Preliminary Result for
SQM2019

• Current studies show a
better constraint and
smaller
statistical uncertainties
(will be published
soon)

• The value obtained by
this fit is
BL = 55 ± 62 keV

• Is compatible within
the theoretical
predictions



• STAR has
discovered the
third anti-
particle and the
second anti-
hypernucleus

Highlight: Anti-4LH

Workshop Univ. Tokyo  - Benjamin Dönigus 

= 4.45

Plenary by B. Trzeciak, Mon
Parallel by J. Wu, Wed

= 6.6



Thermal model

• Different model implementations describe the production probability, 
including light nuclei and hyper-nuclei, rather well at a temperture of
about Tch =156 MeV

Workshop Univ. Tokyo  - Benjamin Dönigus 
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Hypertriton
Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)
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Hypertriton
Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)
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P. Braun-Munzinger, BD, Nucl. Phys. A 987 (2019) 144



Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)

Ultim
ate

 halo
nucle

i:

<r
2 dL

> = 1
0.6

 fm

Hypertriton

Workshop Univ. Tokyo  - Benjamin Dönigus 

P. Braun-Munzinger, BD, Nucl. Phys. A 987 (2019) 144



Hypertriton Identification
Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)
à Radius of about 10.6 fm
Decay modes:

+ anti-particles
à Anti-Hypertriton first observed by
STAR Collaboration:

Workshop Univ. Tokyo  - Benjamin Dönigus 
Science 328,58 (2010)



Hypertriton signal

• Clear signal reconstructed by decay products
• Spectra can also be described by Blast-Wave model

à Hypertriton flows as all other particles

Workshop Univ. Tokyo  - Benjamin Dönigus 



Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. pT

Workshop Univ. Tokyo  - Benjamin Dönigus 


