Recent progress of hyperon-nucleon scattering experiment and future programs at J-PARC

Koji Miwa (Tohoku Univ./KEK)

2nd Workshop on Hadron Interactions, Hyper-Nuclei and Exotic Hadron productions at High-Energy Experiments, May 24, 2023

Present Hadron Experimental Facility

Contents

- Recent progress of hyperon-nucleon scattering experiment
 - Σp scattering experiment at J-PARC
- Current programs at J-PARC
 - Few-body strangeness systems
 - Exotic systems with strangeness
 - Recent S=-2 studies
- Physics programs at extended hadron hall
- Summary

Hypernuclear physics

<u>Baryon-Baryon interaction</u> <u>Study of light Λ , Ξ hypernuclei</u> <u>Spectroscopy of heavy hypernuclei</u>

Progress of theory & experiment of BB int. study

Theoretical progress

Hyperon-Nucleon int. w/ chiral effective field theory (J. Haidenbauer et al.)

Hyperon potential by Lattice QCD

BB interaction at almost physical point for multistrangeness sector

Improving accuracy w/ our new data

Experimental progress

BB interaction by femtoscopy

$$c(k^*) = \int S(r^*) \left| \Psi(\overrightarrow{k^*}, \overrightarrow{r^*}) \right|^2 d^3r$$

Fix source size(S(r^{*})) \rightarrow Study interaction from wave function ($\Psi(\vec{k^*}, \vec{r^*})$)

125

100

75

50

25

-25

-50

-75 ← 0.0

V[MeV]

J-PARC E40 : Measurement of $d\sigma/d\Omega$ of Σp scatterings

Verification of quark Pauli repulsion

Constraint for BB int. theories

J-PARC E40 experimental setup

Two successive two-body reactions

$\boldsymbol{\Sigma}$ beam identification

Σ beam identification

Recoil proton identification

d σ /d Ω of np scattering from Σ^- decay

The derived $d\sigma/d\Omega$ of np scattering are consistent with past measurements.

Kinematical identification of Σ^-p scatterings

-20

20

 $\Sigma^{-}p$ scattering events

Counts

60

50

30

20

10

(c)

Check kinetic energy difference between

- E_{measured} : measured energy
- E_{calc} : calculated energy from scattering angle based on Σ⁻p elastic scattering kinematics

 $\Delta E(\Sigma^{-}p) = E_{\text{measured}} - E_{\text{calc}}$

 $\Delta E(\Sigma p)$ distribution

— Data (K⁺ region)

Data (K^+ side band)

Simulation ($\Sigma p \rightarrow \Lambda n$)

Simulation ($\Sigma p \rightarrow \Sigma^0 n$)

Simulation (Σp)

Simulation (np)

Simulation $(\pi^{-}p)$

Simulation (all sum)

 $\Delta E(\Sigma^{-}p)$ (MeV)

 $\Delta p (\Sigma p \rightarrow \Lambda n)$ distribution

$d\sigma/d\Omega$ of the Σ^-p channels

Clear forward peaking angular dependence

Comparison with theories

- fss2, Chiral EFT show a reasonable angular dependence.
- Nijmegen ESC models clearly underestimate the forward angle.

These channels CAN be understood within extended SU(3) flavor symmetry based on NN interaction.

$d\sigma/d\Omega$ of Σ^+p elastic scattering TAM

T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

E40 data : much smaller than fss2 prediction and E289 results

Comparison with theories

- fss2, FSS (quark model) are too large compared to data
- Chiral EFT's momentum dependence does not match with data
- Nijmegen (ESC) models are rather consistent.

Phase shift analysis

T. Nanamura et al., arXiv:2203.08393 Talk in June 30th

Derived phase shift suggest that the ${}^{3}S_{1}$ interaction is moderately repulsive.

Comparison with HAL QCD

Our phase shift values are consistent with HAL QCD's prediction.

Potential of Σ^+ p ³S₁ channel

Phase shift of Σ^+ p ³S₁ channel

H. Nemura et al., EPJ Web of Conf., 175, 05030 (2018)

New Σp scattering data and progress of Chiral EFT

But, the interactions are not uniquely determined yet.

We need more data from additional channels (Λp , ...) and additional differential observables (polarizations, ...)

Future Λp scattering experiment w/ polarized Λ in the extension project.

Toward Ap scattering

<u>Reliable ΛN two-body interaction :</u>

key to deepen Λ hypernuclear physics

Femtoscopy from HIC

ALICE Collaboration, arXiv:2104.04427

New cross section data from Jlab CLAS

J. Rowley et al. (CLAS), Phys. Rev. Lett. 127 (2021) 272303

New project at J-PARC

Ap scattering w/ polarized Λ

- Feasibility test w/ E40 data
- Expected results in new experiment

Λp scattering experiment with polarized Λ beam

Λ beam identification

J-PARC P86 (J-PARC EX project)

Λp scattering experiment with polarized Λ beam

$d\sigma/d\Omega$ and Spin observables in Λp scattering

No differential observables of Λp scattering SO FAR

Simulated results w/ $10^8 \Lambda$

--> Large uncertainty in P-wave and higher-wave interaction.

Theoretical prediction shows quite different angular dependence in $d\sigma/d\Omega$, A_v and D_v^y

These new scattering data become essential constraint to determine spin-dependent ΛN interaction

Contents

- Recent progress of hyperon-nucleon scattering experiment
 - Σp scattering experiment at J-PARC
- Current programs at J-PARC
 - Few-body strangeness systems
 - Exotic systems with strangeness
 - Recent S=-2 studies
- Physics programs at extended hadron hall
- Summary

Hypertriton puzzle

Heavy ion experimental results settle down?

23

- B_{Λ} measurement
- MAMI : decay pion spectroscopy
- JLab : 3He (e, e'K⁺) missing mass spectroscopy
- J-PARC E07 : hyperfragment at K- interaction on emulsion
 → Nakagawa's talk

Lifetime measurement by direct time measurement

- ELPH : ³He(γ, K⁺) reaction
- J-PARC E73 : ³He (K⁻, π^0) reaction

E73 is ready for data taking of ${}^3_{\Lambda}$ H run

Lifetime measurement by direct time measurement between production and decay

Pilot run for ⁴_AH lifetime measurement was successful

 ${}^{3}_{\Lambda}$ H production was confirmed from the decay π -'s momentum

273kW*Day executed in May, 2021 $\mathrm{K}^{-} + {}^{3}\mathrm{He} \rightarrow^{3}_{\Lambda}\mathrm{H} + \pi^{0}$ slows down and decays at rest $^{3}_{\Lambda}\mathrm{H} \rightarrow^{3}\mathrm{He} + \pi^{-}$ $^{3}_{\Lambda}\mathrm{H} \rightarrow^{2}\mathrm{H} + \mathrm{p} + \pi^{-}$ 450 400 l13.3 ± 0.4(stat.)Me 350 δE correction counts/2MeV/c 300 Λ/Σ^0 contribution 250 200 150 Σ^{-} contribution 100 50 -0.25 -0.2 -0.15 -0.1 -0.05 pion momentum * pion charge[GeV/c] -0.25 -0.050 11

Hyperfragment at K- interaction on emulsion

Succeeded in finding hypertriton w/ Machine Learning in the E07 nuclear emulsion (RIKEN, Gifu Univ. + α)

180.0±0.6µm

10µm

,117.0±3.0 µm

127.5±0.3µm

>21.12 mm

>4.93 mm

T. R. Saito et al., Nature Review Physics 3, 803 (2021)

βH

 $8.5 \pm 0.2 \, \mu m$

768.9±3.5µm

7.2±0.2 µm

28.80±0.01mm

50 µm

 ${}^4{}_{\Lambda}\text{H}$ and ${}^3{}_{\Lambda}\text{H}$ can be separated clearly from the $\pi^{-}\text{'s}$ range information

B_Λ measurements of ${}^4_{\Lambda}$ H and ${}^3_{\Lambda}$ H are ongoing → Nakagawa's talk in detail

H dibaryon (SU(3) flavor singlet hexaquark state)

IM ($\Lambda\Lambda$) (GeV/c²)

Progress on analysis of HypTPC

Invariant mass reconstruction by HypTPC

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

- Mass dependence of Kbar-nucleon system from K-p to K-ppnn
 - Aiming to clarify the origin of QCD mass and the mysteries of high-density nuclear matter by measuring changes in the properties of K-mesons in nuclear matter.

K⁻p and K⁰n mass thresholds

J-PARC E31 @ K1.8BR

• First derivation of S-wave KbarN scattering amplitude in I=0 channel from 3 $\pi\Sigma$ decay modes.

Resonance pole was found at $1417.7^{+6.0}_{-7.4}$ $^{+1.1}_{-1.0} + \begin{bmatrix} -26.1^{+6.0}_{-7.9} & ^{+1.7}_{-2.0} \end{bmatrix} i \text{ MeV}/c^2$

S. Aikawa et al., Phys. Lett. B 837 (2023) 137637

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

Ξ hypernuclei

<u>Confirm the attractive Ξ -nuclear potential from observation of Ξ hypernuclei in emulsion</u>

Ξ hypernuclei

PTEP. 2021. 073D02

<u>Confirm the attractive Ξ -nuclear potential from observation of Ξ hypernuclei in emulsion</u>

32

First attempt to measure Ξ Atomic X-ray in E07

Ξ -Ag/Br atomic X rays in emulsion

- Triple-coincidence hybrid method
- 1. Ξ production by spectrometers
- 2. Ξ stop ID by emulsion
- 3. X-ray measurement with Ge detectors

X-ray peaks were not observed due to lower emulsion and Ge detector efficiencies than expected

 $\sigma \text{-stop} \qquad \rho \text{-stop with Auger electron} \\ (\text{Nuclear fragment from } \Xi^- \text{ stop}) \qquad (\text{Absorption by heavy elements})$

Ξ^- Fe atomic X-ray (E03)

 $n=7\rightarrow 6$: X-ray energy = 172 keV \leftarrow small shift/width

n=6→5 : X-ray energy = ~286 keV ← finite shift/width due to ΞN interaction expected shift ~ 4keV, width(Γ) ~ 4keV No clear peak structures are found at present.

BG level is consistent with our expectation

X ray yields are found to be smaller than expectation?

 \rightarrow Good S/N measurement may have advantage than high statistics measurement.

Future measurement w/ Ξ stop identification using active target

E70 experiment with S-2S spectrometer

 $^{12}{}_{\Xi}Be$ spectroscopy by ^{12}C (K⁻, K⁺) reaction

2023 Spring : Commissioning with beam 2023 Autumn : Physics run

E70 experiment with S-2S spectrometer

$\Xi^{-12}C$ X-ray measurement with AFT

Construction of S-2S has been completed!

Aerogel

In E03, we found that X ray yields is smaller than expectation. → Good S/N measurement may have advantage than high statistics measurement.

E- stop ID w/ Active Fiber Target
 95% background reduction! (w/ 70% survival ratio)
 We have chance to take X-ray data
 in parallel with E70 (Ξ hypernuclear spectroscopy w/ S-2S)
 physics data-taking

Light Ξ hypernuclear systems

The spin, isospin averaged ΞN interaction was confirmed to be attractive by E07 experiment. \rightarrow Study of spin, isospin dependence of ΞN interaction is essential

$$V_{\Xi N} = V_0 + \sigma \cdot \sigma V_{\sigma \cdot \sigma} + \tau \cdot \tau V_{\tau \cdot \tau} + (\sigma \cdot \sigma)(\tau \cdot \tau) V_{\sigma \cdot \sigma \tau \cdot \tau}$$
 After E75

Contents

- Recent progress of hyperon-nucleon scattering experiment
 - Σp scattering experiment at J-PARC
- Current programs at J-PARC
 - Few-body strangeness systems
 - Exotic systems with strangeness
 - Recent S=-2 studies
- Physics programs at extended hadron hall
- Summary

Slide by F. Sakuma Hadron Experimental Facility extension (HEF-ex) Project **Expand research programs at the Present HEF Extended HEF K10** Hadron Experimental Facility to explore (2009~) **Origin & Evolution of Matter HIHR** K1.8 more deeply **K1.8BR** KL2 K1.8 KL K1.8BR High-p K1.1/K1.1BR 30 GeV Extended hall High-p (π 20) primary proton bean COMET **1** production target (T1) COMET 1 secondary-charged beamline (K1.8/K1.8BR) + 1 new production target (T2) **1** neutral beamline (KL) + 4 new beamlines (HIHR, K1.1/K1.1BR, KL2, K10) **1** primary beamline (High-p) 2 updated beamlines (High-p (π 20), Test-BL) 1 muon beamline (COMET)

40

Extract density dependent ΛN interaction

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- Systematic ΛN scattering measurement
 - intense polarized Λ beam

Investigate diquarks in baryons

- High-resolution charm baryon spectroscopy
 - intense high-momentum π beam

K10

- High-resolution multi-strange baryon spectroscopy
 - intense high-momentum separated K beam

Search for new physics beyond the SM

- Highest-sensitive $K^0_L o \pi^0
 u \overline{
 u}$ measurement
 - intense neutral K beam

Behaver of non-perturbative QCD in low energy regime Slide by F. Sakuma Hadron Physics: Diquarks in Baryons

42

How quarks build hadrons?

Investigate diquarks in baryons toward understanding of dense quark matter

Charm Baryon Spectroscopy with intense high-momentum π beam @ High-p (π 20) Λ_c^* Establish a diquark (*ud*) Λ_{c}^{*} : Disentangle "collective motion of *ud*" / diauark and "relative motion between *u* and *d*" Production rate of charm baryon σ -dep. Int. Isotope shift *****Simulation 700E p(π⁻,D*-)X $\Lambda_{\rm c}(2625)^+$ **Diquark** 600 500 $\Lambda_{c}(2595)^{+}$ $\Lambda_{c}(2880)^{+}$ 400 Charm quark 300 $M_0 >> m_a$ Σ_{c}^{+} -1/2+ $\Lambda_{c}(2940)^{+}$ 200 $\Sigma_{c}(2800)^{+}$ "production rate" and "decay rate" will 100 2.2 2.4 2.5 2.6 2.7 2.9 2.3 2.8 provide us information on diquark [GeV/c²] Mass of charm baryon

Behaver of non-perturbative QCD in low energy regime Slide by F. Sakuma Hadron Physics: Diquarks in Baryons

How quarks build hadrons?

Investigate diquarks in baryons toward understanding of dense quark matter

Charm Baryon Spectroscopy

with intense high-momentum π beam @ High-p (π 20)

Establish a diquark (ud)

 Λ_c^* : Disentangle "collective motion of *ud*" and "relative motion between *u* and *d*"

Multi-Strange Baryon Spectroscopy with intense high-momentum K beam @ K10

Diquarks in different systems

- Ξ^{*}: *us/ds* diquark
- $\mathbf{\Omega}^*$: the simplest *sss* system
 - \rightarrow diquark is expected to be suppressed

Systematic measurements of charm and multi-strange baryons will reveal the internal structure of baryons through the diquarks

43

Hyperon puzzle in neutron star

Strange Hadronic Matter in neutron star?

Hyperon's appearance is reasonable scenario because of the huge Fermi energy of neutrons in the inner core.

How can we reconcile ?

Hyperon appearance \rightarrow soften EOS

<u>3 Baryon Force (3BF):</u>

Significant repulsive contribution at high density

We have to understand the density dependence of ΛN interaction from Λ binding energy data in hypernuclei. \rightarrow determine the strength of the ΛNN force

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei⁴⁵

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_{Λ}

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei 46

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_{Λ}

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Calculation w/ only ΛN int : Over bound

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of ${\sf B}_\Lambda$

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Accurate B_{Λ} measurement

Effect of density dependence of ΛN interaction

Difference

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei $^{^{48}}$

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_Λ

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Accurate B_{Λ} measurement

Effect of density dependence of ΛN interaction

Difference

This density dependence should be explained from ΛNN force.

 \rightarrow Predict Λ N int. in higher density nuclear matter.

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_Λ

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Accurate B_{Λ} measurement

Effect of density dependence of ΛN interaction

Difference

 Λ NN repulsive interaction is introduced to

explain Λ hypernuclear binding energy

This density dependence should be explained from ΛNN force.

 \rightarrow Predict Λ N int. in higher density nuclear matter.

High-resolution Λ hypernuclear spectroscopy at HIHR

Physics at Hadron Experimental Facility

Summary

- Many progresses have been obtained in the BB interactions study.
 - Lattice QCD, Chiral EFT, ...
 - Femtoscopy is successfully used for the hadron-hadron interaction study.
 - YN scattering experiment gets possible!
- Systematic measurements of Σp scattering at J-PARC
 - $d\sigma/d\Omega$ for Σ^+p , Σ^-p , $\Sigma^-p \rightarrow \Lambda n$ scatterings with ~10% level accuracy for fine angular pitch (dcos θ =0.1)
 - Momentum dependence of $\Sigma^+ p \, \delta({}^3S_1)$ channel was derived (-20 ~ -35 degrees)
- Future project : Λp scattering w/ polarized Λ beam
 - $d\sigma/d\Omega$ and spin observables (analyzing power, depolarization)
 - \rightarrow reinforce the current ΛN interaction for deepening hypernuclear physics.
- Current strangeness nuclear physics programs at J-PARC
 - Hypertriton, H-dibaryon, Kaonic nuclei, X hypernuclear spectroscopy, X atimic X-ray measurement
- High-resolution spectroscopy up to medium and heavy Λ hypernuclei
 - New HIHR beam line with dispersion-matching technique will open new era of unprecedent resolution of 400 keV (FWHM)
 - By using this high resolution, the ΛNN 3body interaction will be examined.