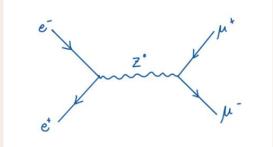
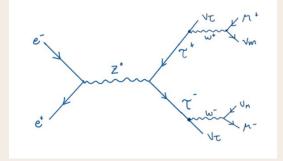

46 46 46 46 46

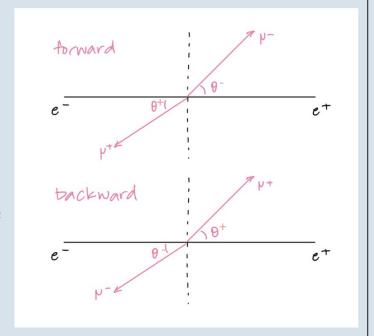
Forward Backward Asymmetry


Sofia Lara, Brenda Chow



Simulation Data

- Z boson decay into leptons
 - Signal: $Z \rightarrow \mu^+\mu^-$
 - Background: $Z \rightarrow \tau^+\tau^-$ and $Z \rightarrow \mu^+\mu^-(\gamma)$
- Used Whizard and Pythia to generate 10 million
- Cross section = 1462.08 pb (Pythia), 1690 pb (Whizard)
- Event generation is done with nominal FCC parameters for the Beam Energy Spread (0.132%) and Bunch dimensions (4.38/15.4 mm)
- Detector simulation done using IDEA detector with Delphes (Winter2023 campaign)
- Goal: measure the forward-backward asymmetry!

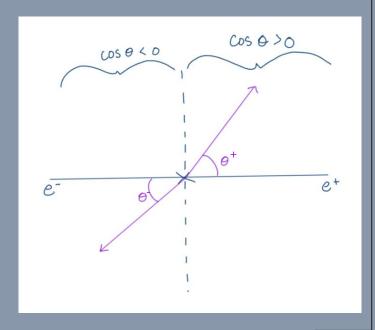


What is Forward-Backward Asymmetry?

- Forward-backward Asymmetry (A_{FB}):

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- σ_F : cross section for events with the fermion scattered into the hemisphere which is forward with respect to the e⁻ beam direction
- σ_B : cross section in the backward hemisphere

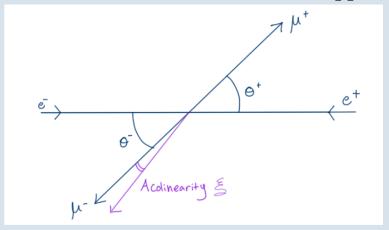

What is Forward-Backward Asymmetry?

- Alternatively determined using the scattering angle in the rest system

$$cos(\theta_c) = \frac{sin(\theta_+ - \theta_-)}{sin(\theta_+) + sin(\theta_-)}$$

- Minimises sensitivity to photon emission, assuming zero initial state radiation

$$\frac{d\sigma}{d\cos\theta} = \sigma(s) \cdot \left\{ \frac{3}{8} (1 + \cos^2\theta_c) + A_{FB}(s) \cdot \cos\theta_c) \right\}$$

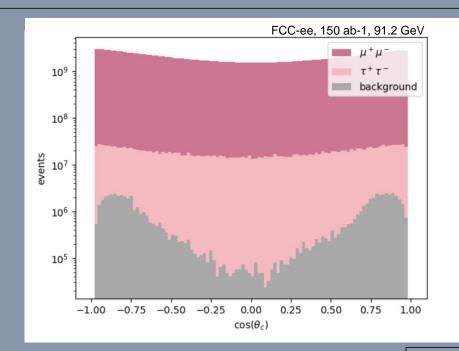

Event Selection

Analysis is based off the L3 collaboration paper

- 1. Only 2 muons
- 2. Max muon momentum $(p_{max}) > 0.6$ Eb
- 3. At least 1 muon with transverse momentum $(p_T) > 3$ GeV
- 4. Differential cross section in the angular region $|\cos(\theta)| < 0.98$
- 5. Acolinearity angle (ξ) <15°

Acolinearity Angle

- Acolinearity means that the scattered muons are perfectly back to back (collinear, but opposite directions)
- If the acolinearity angle $(\xi) > 0^{\circ}$, the muons are not acolinear!
- Important because acolinear muons means the Z boson was at rest during the decay, and thus conservation of momentum can be applied

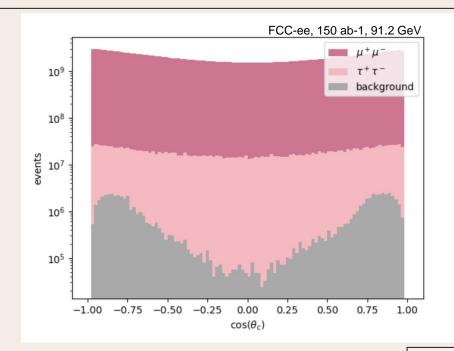


Integration Method: A_{FB}

- Integrate signal on $cos(\theta_c) \in (0, 1)$ for forward cross section (σ_E)
- Integrate signal on $cos(\theta_c) \in (-1, 0)$ for backward cross section(σ_B)
- AFB formula:

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- AFB = -2.353161×10^{-2}



Integration Method: Statistical Uncertainty

variance derived from AFB:

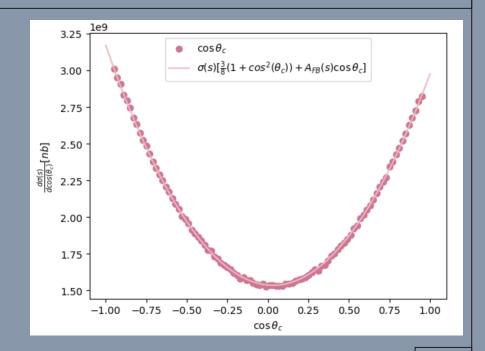
$$\sigma_{AFB}^2 = \left(\frac{\partial A_{FB}}{\partial F}^2\right) (\sigma_F^2) + \left(\frac{\partial A_{FB}}{\partial B}^2\right)^2 (\sigma_B^2)$$
$$= \frac{4\sigma_f \sigma_b}{(\sigma_f + \sigma_b)^3}$$

$$\sigma_{AFB} = 2.433597 \times 10^{-6}$$

χ^2 Goodness of Fit Test

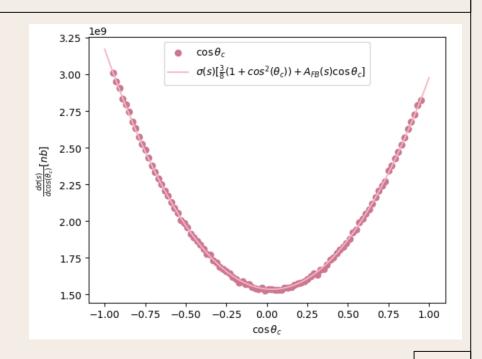
- Plotted $\mu^+\mu^-$ as a scatter plot
- Fitted with the differential cross section for muon pair production ("Born" form)

$$\frac{d\sigma}{d\cos\theta} = \sigma(s) \cdot \left\{ \frac{3}{8} (1 + \cos^2\theta_c) + A_{FB}(s) \cdot \cos\theta_c) \right\}$$


- χ^2 test statistic = 0.068
 - greater than significance level 0.05, so reject null
 - conclusion: this is a good fit for the data!

χ^2 Fit Method: A_{FB}

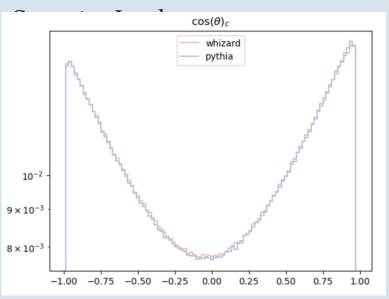
- Extract optimal parameters of curve fit to find AFB!
- $AFB = -2.379713 \times 10^{-2}$

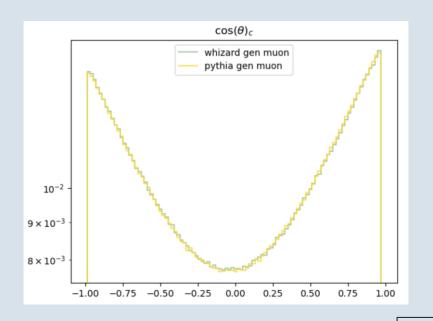

χ^2 Fit Method: Statistical Uncertainty

 covariance matrix shows how closely two parameters are related:

$$\begin{pmatrix}
8.706 \times 10^{7} & 4.219 \times 10^{-11} \\
4.219 \times 10^{-11} & 4.694 \times 10^{-12}
\end{pmatrix}$$

- the smaller the values, the closer the parameters are
- diagonal elements are variance of parameters (A_{FB} and σ_{AFB})


$$\sigma_{AFB} = \sqrt{4.694 \times 10^{-12}}$$
$$= 2.1672367 \times 10^{-6}$$



Reconstructed Particles vs. Generator-Level Muons

Reconstructed

13

Comparison

	Integrated AFB	Fitted AFB
Pythia (reconstructed)	0.02252649 ± 2.25e-6	0.02286759 ± 2.18e-6
Pythia (generated)	0.02399285 ± 3.63e-6	0.02431447 ± 3.50e-6
Whizard (reconstructed)	0.02093906 ± 2.04e-6	0.02118647 ± 1.97e-6
Whizard (generated)	0.02092899 ± 2.02e-6	0.02160957 ± 1.98e-6
L3 Collaboration Results	0.0086 ± 0.0051	N/A