
Extracting Electroweak Parameters from the Lineshape

By Rujuta Sane, Denis Siminiuc, Isabella Torres

FCC-ee Feasibility Study

The goal of the Future Circular Collider (FCC) feasibility study is to design a new infrastructure for a particle collider. It is proposed to build a large, 100km circular tunnel that will collide electrons and positrons (FCC-ee). The goal is to reach higher energies and intensities than those of the previous Large Electron-Positron Collider (LEP).

Project Overview

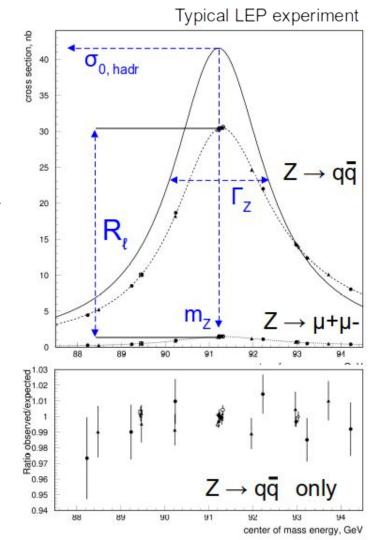
Goal: Minimize the uncertainty on the Z-boson mass and width measurements by determining the optimal number of energy points and what luminosity to run the accelerator at.

Questions to consider:

- How spread out should the energy points be from the peak?
- How do we divide luminosity among the points?
- What are the present realistic uncertainties and their impact?
 - luminosity, center of mass, and the cross sections

Measuring the Z boson resonance

Cross section


$$\sigma(\sqrt{s}) = \frac{N_{\text{signal}}}{\mathcal{L}} = \frac{N_{\text{selected}} - N_{\text{background}}}{\varepsilon A \mathcal{L}}$$

What can we extract?

- m_Z, Γ_Z, Hadronic peak cross section (σ_{0, hadr})
- (Ratio of leptons (R₂), Number of light neutrinos)

Hadronic final state has smallest uncertainties

- quarks have color charge
- will focus only on hadron cross sections

How did we do the fitting?

Revived the old L3 program to fit two-fermion data

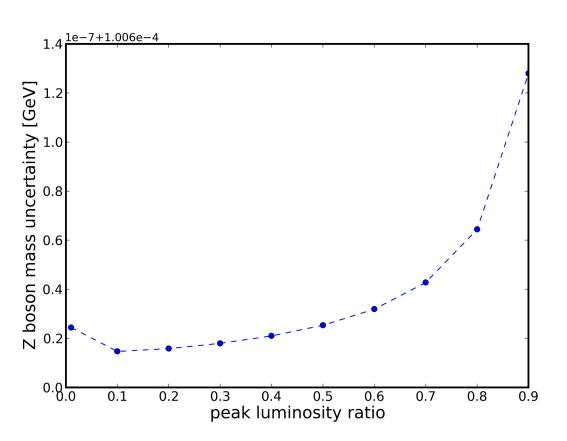
- Various LEP theory programs are interfaced (TOPAZ0, ZFITTER, ALIBHABHA, MIBA,): ZFITTER is the only program used for the following studies
- Some weird old program names ... PAW, KUIP, SIGMA and COMIS?
- For verification the full L3 cross section and forward-backward asymmetry dataset was fit, including all details and the numbers in the last L3 paper were reproduced
- Thanks to Martin Grünewald who recovered the program from backups

We need to figure out how to do this for real with FCC data: Is Fortran making a come back?

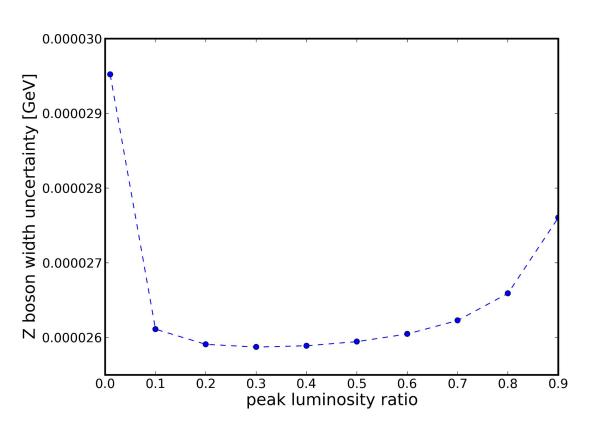
How good can the determination be?

Extract Pseudo Observables: m_Z , Γ_Z and $\sigma_{0,hadr}$; Inputs: hadronic cross sections, 5 points, 30/ab each

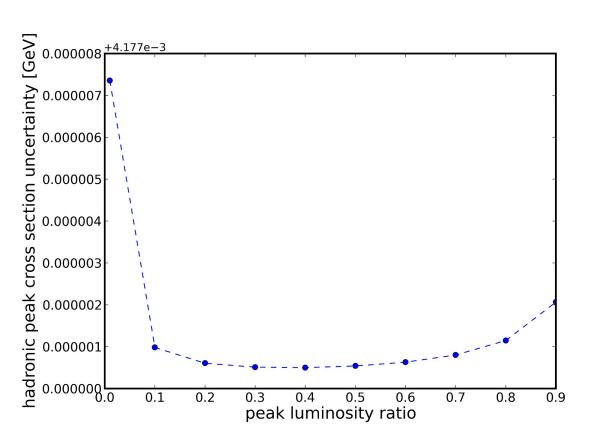
- 1. Statistical uncertainty on hadrons only, nothing else
- 2. Add fully correlated systematic uncertainty as large as peak stat. uncertainty
- 3. Add stat. uncertainty on luminosity corresponding to 14 nb cross section
- 4. Add 10⁻⁴ syst. fully correlated, and another 10⁻⁵ uncorrelated
- 5. Add 10 keV correlated uncertainty on ECMS
- 6. Or alternatively 100 keV correlated uncertainty on ECMS


Setup	$delta(m_z)$	delta(Γ_Z)	delta($\sigma_{0,hadr}$)
units	[keV]	[keV]	[pb]
1	1.2	3.4	0.044
2	1.2	3.4	0.044
3	1.7	5.2	0.076
4	8.4	26	4.2
5	13	26	4.2
6	101	26	4.2

Luminosity


- In the program, we iterate over the luminosity ratios with increments of .10,
 from .10 to .90
 - The ratio is the amount of luminosity used on peak divided by the total luminosity (150 ab^-1)
- The purpose of this iteration was to find the optimal luminosity used on the peak that minimizes the uncertainties on the Z boson mass, width and the peak hadronic cross section measurements.

Minimum Z Mass Uncertainty

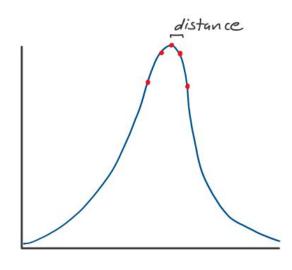

Z-boson mass uncertainty is minimized at peak luminosity ratio of about 0.1

Minimum Z Width Uncertainty

Z-boson width uncertainty is minimized at ~0.3 peak luminosity ratio.

Minimum Hadron Peak Cross Section Uncertainty

Hadronic peak cross section uncertainty is minimized at a peak luminosity of ~0.4


Point Distribution

In this study, we only fit the measurements using 5 points and varying their symmetric distances from the peak

 We have selected 4 different set ups at distances of:

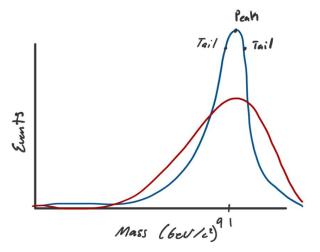
0.2, 0.5, 1.0, and 2.0 GeV

 The findings were particularly interesting since no distance gave us more than one minimal error.

What next?

- Analyze effects of varying the distribution of the luminosity among the off-peak points
- Testing with 3 or 4 energy points instead of 5
- Run more trials at varying distances to better determine a more precise optimal distance between points

Uncertainty configurations:


ECMS: default

Luminosity: statistical

Total cross section: negligible

В	С	D	E
ECMS Lumi QUAN	error mass	error width	error hadronic
default default default	1.17E-06	3.39E-06	4.45E-05
default default stat	1.17E-06	3.39E-06	4.45E-05
default default real	1.17E-06	3.39E-06	4.45E-05
default stat default	1.75E-06	5.25E-06	7.60E-05
default stat stat	1.75E-06	5.25E-06	7.60E-05
default stat real	1.75E-06	5.25E-06	7.60E-05
default real default	8.45E-06	2.57E-05	4.18E-03
default real stat	8.45E-06	2.57E-05	4.18E-03
default real real	8.45E-06	2.57E-05	4.18E-03
stat default default	1.17E-06	3.39E-06	4.45E-05
stat default stat	1.17E-06	3.39E-06	4.45E-05
stat default real	1.17E-06	3.39E-06	4.45E-05
stat stat default	1.75E-06	5.25E-06	7.60E-05
stat stat stat	1.75E-06	5.25E-06	7.60E-05
stat stat real	1.75E-06	5.25E-06	7.60E-05
stat real default	8.45E-06	2.57E-05	4.18E-03
stat real stat	8.45E-06	2.57E-05	4.18E-03
stat real real	8.45E-06	2.57E-05	4.18E-03
real default default	1.01E-05	3.40E-06	4.45E-05
real default stat	1.01E-05	3.40E-06	4.45E-05
real default real	1.01E-05	3.40E-06	4.45E-05
real stat default	1.02E-05	5.26E-06	7.60E-05
real stat stat	1.02E-05	5.26E-06	7.60E-05
real stat real	1.02E-05	5.26E-06	7.60E-05
real real default	1.31E-05	2.58E-05	4.18E-03
real real stat	1.31E-05	2.58E-05	4.18E-03
real real	1.31E-05	2.58E-05	4.18E-03

Measuring the Z-boson Mass and Width

Breit-Wigner Dist Gaussian Dist. Fit samples with a Breit-Wigner distribution

Graph mass/width error again different luminosity ratios