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CRITICAL COMPONENT ARE
SURVEYS THAT SCAN THE SKY AT
SET INTERVALS (CADENCE)




MULTI-COLOR LIGHT CURVES

(MULTI-CHANNEL TIME SERIES)

Irregular sampling due
to survey cadence




RUBIN OBSERVATORY

#1 flagship of US community, recommended by
National Research Council since 2010, jointly
funded by NSF and DOE

Ten year survey (LSST) starting 2026
~ 10 million alerts/night or 20TB per night ===
Broadcast worldwide within 60s @J 25TB per day
37 billion light curves
* 6 filters (u,g,r,i,z,y or 320—-1050 nm, 3 day cadence)
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ZWICKY TRANSIENT/FACILITY

(ZTF)
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* Pathfinder to Rubin especially for transients
* Operating at 10% Rubin scale

* Alerts broadcast within ~20 mins
* Only survey with public real-time alerts

* 2 billion light curves and counting...

* public survey in 2 filters (g,r, 2 day cadence)




CURRENT PROTOCOLS AND LIMITATIONS
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Public via GCN

* Eventtime

* Sky localization
* Distance

ML real-bogus classifier

Not a known source (e.g. AGN)
Evolution rate




~50 candidates

filter

Goal:
* Use limited resources to acquire more
information to:
* |dentify the event
* True event prob <0.05

filter

@ ztfg

ztfr

e Additional follow-up is critical!
e C(Classifiers don’t answer what to do next and
how to adapt

Process needs to be:

v’ Free from fatigue/bias
v’ Low-latency
v’ Scalable




BY MID 2023

LVK will operate at twice the sensitivity
e 50-250 detections a year compared to 20 last time

* Localizations will not improve by much

BY LATE 2025

Rubin will come online and produce 10x as many candidates for
human experts to analyze

Follow-up resources will not increase at nearly the same rate

Current protocol not sustainable or suitable to get at statistics




AUTONOMOUS REAL-TIME

DECISION-MAKING




DECISION MAKING UNDER UNCERTAINTY

e Classically: Optimal experiment design

e Contemporary ML: Reinforcement learning, optimal sensing

Drivers of ML success in industry

Supervised learning

# Transfer learning

Commercial
success

Unsupervised learning

>
>

Time

- Andrew Ng, NIPS 2016 tutorial

Kirstine Smith (1878-1939)




~50 candidates

filter

Goal:
* Use limited resources to acquire more
information to:
* |dentify the event
* Maximize constraints on
interesting light curve physics




~50 candidates

Goal:
* Use limited resources to acquire more
information to:

* |dentify the event
* Maximize constraints on

interesting light curve physics

Step 1:

Define state space
* e.g. observed multi-channel light curves




~50 candidates

Goal:
* Use limited resources to acquire more
information to:

* |dentify the event
* Maximize constraints on

interesting light curve physics

Step 2:

Define action space
* e.g.add datain {g, r, g+r, do nothing}

In general, actions can be:
Continuous
Stochastic

With variable cost and/or subject to budget




~50 candidates

Goal:
* Use limited resources to acquire more
information to:

* |dentify the event
* Maximize constraints on

interesting light curve physics

Step 3:

Estimate outcome states given actions

Dynamics/transition:
In general can be unknown and/or stochastic




~50 candidates

Goal:
* Use limited resources to acquire more
information to:

* |dentify the event
* Maximize constraints on
interesting light curve physics

Step 4:

Estimate utility of outcome states:
 classification accuracy, TPR, F1-score, etc

* improvement in physics model parameters
* all of the above

In general can be stochastic

Your science!




~50 candidates

Goal:
* Use limited resources to acquire more
information to:
* |dentify the event
* Maximize constraints on
interesting light curve physics

Step 5:

Take action according to policy

* e.g. greedy policy: take action with
maximum reward; does not guarantee
optimal series of actions

 Commonly argmax a Q(s,a)




~50 candidates

Goal:
* Use limited resources to acquire more
information to:

* |dentify the event
* Maximize constraints on
interesting light curve physics

Step 6:

Adapt to new information
(inc. acquisition failure/latency, survey data)

Finish when episode ends or exhausted budget or
repeat forever




MEASURING EXPANSION OF THE UNIVERSE




Constrain cosmological parameters:
Hubble constant, Dark Energy equation of state, ...

Low redshift samples constrain local

large-scale structure properties:
growth rate, velocity flows

la Supernovae




Real-time SN la LC

augmentation to
maximize cosmology

Cosmology is
f(xg» X, ¢, Z) for a
sample of SNe

Xg» X, C are light
curve fit parameters
(z is spectroscopic)




Real-time SN la LC

augmentation to
maximize cosmology

Minimize uncertainty on
light curve fit parameters
(in quadrature)

Minimize uncertainty
on cosmology




Problem statement:

Augment photometry to branch-normal SN la light curves from ZTF-| public survey (g and r)
in g,r, and i to minimize net uncertainty on SALT2 parameters




Problem statement:

Augment photometry to branch-normal SN la light curves from ZTF-| public survey (g and r)
in g,r, and i to minimize net uncertainty on SALT2 parameters

i-band important for precisely estimating Ho (Burns+ 2018)

Second peak could help probe SN la explosion mechanisms
(Folatelli+ 2010)

Data in UV or IR can help better calibrate models (Milne+ 2015)




Algorithm

Non-stationary MDP with finite horizon (60 day episodes)
State space: Observed photometry and expected data from survey (stochastic, |0x monte carlo). Remaining budget allocated randomly*
Action space: {no action, g, r; i, gr, ri, ig, gri}
Deterministic reward model: SALT2 + photo z A-optimality**

* substitutes expected optimal actions for expected naive actions
** Distance error in quadrature. Note: min y2 #* max liklihood



Gap filling

Resolves phase with high variability (first and second peaks+valleys)
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Improvement in
SALT?2 parameters
over naive- strategy

2-5% more improvement for faint SNe la (peak>18.5 mag)

Due to gap filling, strong prospects for Rubin

Budget Usage 6(0,) 6(o,,) O(o,) 6(o,)

Sravan+ 2021

**Adding data itself can lead to improvement!



IDENTIFYING GRAVITATIONAL WAVE ELECTROMAGNETIC COUNTERPARTS




Kilonovae

« UVOIR transients

* Probe nucleosynthesis in ejecta due to

merger and associated power sources and
the NS EoS

Robust counterparts to most BNS and
some NSBH mergers

 Short lived (<~| week) and faint

Jet-ISM shock (afterglow)
Optical (hours—days)
Radio (weeks—years)

GRB
(t~0.1-15)

/
f‘/\lﬁonova

Optical (t ~ 1 day)

i Merger ejecta
’ Tidal tail and disk wind L
v~0.1-03c

Ejecta—ISM shock
Radio (years)

o
-2

Berger 2014



Reinforcement learning agent that strategizes follow-up to identify
kilonovae

* Learns to evaluate the explore/exploit tradeoff
* Solves the credit assighment problem from any delayed
consequences

* Adapts to new information, from its own actions or other
sources

Toy sequential decision making under uncertainty problem:
* 9 transients, one of which (always) is the true kilonovae (min
photometry = I)
e Contaminants are SNe, unassociated GRB afterglows, shock
breakout (do not include observational significance)

* Follow-up in ZTF g, r, or i (300s exposure) per day
* Finite horizon — 6 days (no action on day |)

e Reward | if agents adds data to the kilonova else 0

e Maximize the number of follow-up to the true kilonova
(non-model specific objective with the expectation that

more data ~ better constraints)




* Learns online (collecting new experiences) in simulated environment
* Linear VFA (state-action value Q = x(s,a)" w

Pyth 1a * X(s,a) is an CNN-autoencoder (for order invariance) representing the
light curves with forecasted outcomes per action

* Learns w via stochastic gradient decent and Adam optimizer

Algorithm SARSA and TD(0) target
Initialize w to small random weights

Set €0 = 1
fork=1,Mdo > For each episode
€+ eo/k"

Initialize s;
fort=1, horizon do
With probability e select random action a¢
otherwise select a; = max, Q(st, ag; W)
Execute action and observe reward r; and next state s;;; from environment
With probability e select random action a;41
otherwise select a1 = Maxg Q(st+1l a1;W) X
Set Aw + ['f‘t + ’)/Q(St+1, QAt41; ’lZ)) — Q(St, Qg, w)]va(St, Qg, 12;)
> : Loss is MSE between TD(0) target®substitute for Q*) and current @
Update w < w + aAw >« is using Adam
end for
end for
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Sravan et al, in prep

= Pythia (Al)

PYTHIA

Mean Random Score

200 400 600
episodes

Linear VFA hypothesis class not sufficiently rich representation of true Q function

*  Benefit is theoretical convergence guarantee. Demonstrates problem learnable!

Shifting to deep Q networks:

* Will remove two-step learning, one for x(s,a) in supervised/unsupervised learning and one for Q via Bellman updates in RL

* Efficient evaluation of realistic large action space, can have vector instead of scalar output




Carbon Footprint

Carbon Dioxide

¢ 420 parts per million (current)

Ice Sheets

¢ 1 27 billion metric tons per year

Estimated emissions: 1210 kg of CO,eq. assuming carbon
efficiency of 0.432 kgCO,eq/kWh

Approximately equal to:
* One round trip LAX-JFK (1180 Kg CO,)

* 4900 km driven in an average combustion engine car

Global Temperature : Arctié Se4 lce Minimum Extent

1 01 °C since 1880 ¢ 1 2 6 percent per decade since 1979
/]\ P k

Sea Level Ocean Warming

¢ 1 inches since January 1993

climate.nasa.gov



OUTLOOK

Target maximizing constraints on the
NS EoS and e.g. place constraints on
maximum non-rotating NS mass

Kilonova diversity with large
samples

Prepare for Rubin
* Deeper and high SNR events

* Motivates effective low-latency use
of expensive space-based follow-up
resources

Other messengers!




OUTLOOK

Flexible to address any situation
where real-time decisions need with

resource limitations

Approaches such as these are the
ultimate human-machine symbiosis

* Reduce burden of tedious work
(especially for well-defined science
cases)

Leave innovation and discovery to
humans (?)







BACKUP CONTENT




REFITT FOR ZTF

Training dataset:
e “Classical” SNe (la, Il, lIn, llb, Ib, Ic, Ic-BL) simulated from ZTF BTS, PS1, and all historic classified SNe with sdssg, sdssr photometry
* 5k per type spanning flat z space 0-0.8 for SN la, 0-0.1 for CC SNe
ML and forecasting:
*  Multi-D Gaussian Process LC fit
* use k similar training LCs using Xception penultimate vector of modal training class (implemented as balltree)
* align with cross-correlation
Daily run at 0900PT (10 mins on 24 cores)
* Ingested via Antares: within 60 d of trigger, <21 d since last photo, at least 3 photo with at least two in the same band >5 hours apart
Recommendations for:
* Photometry for events approaching peak and not in ZTF’s observing plan
e C(Classifications within | 1wk | of forecasted peak

* Anomalies (poor forecast)




WHY ONLY GW1708177?

For O3:

* Median skymap size
~4000 sq deg

* Median distance:
*  BNS~240Mpc
* NSBH ~ 320 Mpc
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LIGO O3 Events (from GraceDB)

103 4

BNS

NSBH
BBH
Retraction

X
4
)
* |

GW170817

102
Log Distance (Mpc)

Petrov+ 2021 (adapted)

BNS NSBH BBH

Median 90% credible area (deg?) ¢

1672791, 19701119 1069743
18207190 18407129 335133
12507128 1076752 230.3778

Median luminosity distance (Mpc) a

337.675%° 871131
621118 1493123
1132753 2748139

cd

Annual number of detections

1315° 24t}§
721’;; 106153
3607350 48013350




