FASERv2

Akitaka Ariga (University of Bern / Chiba University) and Tomoko Ariga (Kyushu University) on behalf of the FASERv2 working group

100 µm

FASER ν and FASER ν 2

2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
LHC				LHC							LHC						
Run 2				Run 3							Run 4						

√ 0.01 tons × 12 fb⁻¹

FASER*v* pilot run

First neutrino interaction candidates at the LHC

FASER Collaboration, Phys. Rev. D 104, L091101 (2021) 1.1 tons × 250 fb⁻¹

FASER*v* physics run

Cross section measurements of different flavors at TeV energies $10-20 \text{ tons} \times 3000 \text{ fb}^{-1}$

FASERv2

Precision v_{τ} measurements and heavy flavor physics studies

FASERv2: Neutrino physics

- FASER ν @LHC-Run 3 (1.2 ton)
 - Unexplored TeV energy ~3000 v_{e} , ~9000 v_{μ} , ~50 v_{τ} CC events
- FASERv2 @HL-LHC (~10 ton)
 - FASER ν 2: Beam ×15-20, ~10 tons mass \rightarrow FASER ν ×200
 - + $\sim 10^5 \
 u_{e}$, $\sim 10^6 \
 u_{\mu}$, $\sim 10^3 \
 u_{ au}$ CC events
- Tau neutrino physics, precise measurement of cross sections, rare process

FASER ν and FASER ν 2 detectors

- On-axis
- Flavor sensitivity
- Charge ID for muons ($\nu_{\mu}/\overline{\nu_{\mu}}$ separation, $\nu_{\tau}/\overline{\nu_{\tau}}$ separation)

• 25x30 cm², 1.1 m long, 1.1 tons

- The FASER ν 2 detector will be composed of 3300 emulsion layers interleaved with 2 mm-thick tungsten plates.
- It will also include a veto detector and interface detectors to the FASER2 spectrometer.
- The total volume of the tungsten target is 40 cm \times 40 cm \times 6.6 m, and the mass is 20 tons.
- The muon rate is to be reduced (with a sweeper magnet) to make the emulsion replacement only once per year.

FASERv and FASERv2 expected number of events

Based on "F. Kling and L.J. Nevay, Forward Neutrino Fluxes at the LHC, <u>Phys. Rev. D 104, 113008</u>" and "J.L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, <u>arxiv:2203.05090</u>"

(v int. rate estimated using Sibyll 2.3d)

(DPMJET 3.2017)

		$v_e + \overline{v_e}$ CC	$ \begin{array}{c} \nu_{\mu} + \overline{\nu_{\mu}} \\ CC \end{array} $	$ \begin{array}{c} \nu_{\tau} + \overline{\nu_{\tau}} \\ CC \end{array} $	$v_e + \overline{v_e}$ CC		
	ν int.	0.9k	4.8k	15	3.5k	7.1k	97
FASER v (1.1 tons 150 fb ⁻¹)	u int. with charm	~0.1k	~0.5k	~2	~0.4k	~0.7k	~10
	u int. with beauty	-	~0.05	-	-	~0.1	-
	ν int.	178k	943k	2.3k	668k	1400k	20k
FASERv2 (20 tons, 3 ab^{-1})	u int. with charm	~20k	~90k	~0.2k	~70k	~100k	~2k
	ν int. with beauty	~2	~10	~0.02	~7	~10	~0.2

5

Observed v_e candidate in FASERv

FASERv2 main tasks

Emulsion films

- The amount of emulsion films per year: $40 \times 40 \text{ cm}^2 \times 3300 \text{ films or}$ $20 \times 40 \text{ cm}^2 \times 6600 \text{ films (total ~ 550 m}^2)$
- Emulsion production facility in Nagoya University
- Performance tests in realistic conditions (long-term performance)

Tungsten target

- 3300 2-mm-thick tungsten plates, 40×40 cm², purity>99.95%
- Preliminary cost estimate from a Chinese company, 560 USD / plate
- Will purchase sample plates and start testing them.

• Mechanical structure, assembly method, cooling system

- Mechanical structure to hold 20-ton emulsion-tungsten target
- Keep temperature as low as possible to prevent "fading"
- Start working on each of them
- Emulsion facility
 - Dark room for assembling and development

Emulsion readout system

- Development of HTS3 in Nagoya University
- 2nd in Chiba University
- Veto, interface tracker and charge ID
 - Combined analysis with FASER2 \rightarrow See the talk by Yosuke at FPF5
- Performance, physics sensitivity studies
 - Simulations

Setup for charge ID

Detector surface

- Emulsion: 40×40 cm²
- Veto & IFT : $80 \times 80 \text{ cm}^2$

FIG. 10. Schematic diagram of the full FASER2 detector, showing the veto system, un-instrumented 10 m decay volume, tracker, magnet, electromagnetic calorimeter, hadronic calorimeter, iron absorber, and muon detector.

FASER2

FASER ν muon measurements

In order to validate the FLUKA/BDSIM simulations of the muon background, 19 small emulsion detectors were installed in July 2022 in the region ~2 m from the LOS to measure the muon flux. They were extracted in September 2022, collecting 10.6 fb⁻¹.

Reducing the background muon rate with a sweeper magnet

- To increase the duration of data taking with a FASERv2 detector, a reduction of muon rate is vital.
- Maximum track density in emulsion should be kept below ~ $5x10^5$ tracks/cm² \rightarrow 2 months without muon reduction
- A sweeping magnet equivalent to ~7 Tm may be installed in this location.
 - This would bend 100 GeV (1 TeV) muons on the LOS by 4.2 m (40 cm) from the LOS.

Cost estimate

Item	Cost (kCHF)	How many years	Sub-total	Comments
Fixed costs				
				2-mm-thick 40x40 cm ² , 3300 plates
Tungsten	2000		2000	+10%
Emulsion readout	1700		1700	
Expert of the readout				
system	500		500	
Veto / interface detectors	200		200	
	100		100	
Support structure	400		400	
Cooling system	100		100	
Annual cost				
Emulsion	1000	10	10000	40x40 cm ² 3300 films
	1000			
Chemicals for development	50	10	500	
Personnel for scanning	50	10	500	
Total			15900	

Schedule

	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
	Run 3	Run 3	Run 3				Run 4	Run 4	Run 4 Year-1	Run 4 Year-2	
MC studies and documentation		pre-CDR		TDR							
Detector support and cooling system		R&D			Cor	struction					
Tungsten plates		Tests			P	urchase and	tests				
Readout system (HTS3?)		Developme	nt of HTS3	-	Dedicated	system for Fr	u2: producti	on and tests			
Emulsion films		Stability stu	dy					Production	Production	•	
CERN darkroom facility for the assembly and development											
Construct the interface detector						Constructio	on Insta	llation →			
Construct the veto detector								→			
Cost					Tungsten ~ Readout ~2 Support ~0 Cooling ~0. IFT+veto ~0	2M .2M .4M 1M 0.2M		Emulsion 1.1M (for 2031)	1.1M (for 2032)		1.1M/year during Run

To do

- Establish a firm FASERv2 team.
- Define the tasks and responsibilities and follow the development in regular WG meetings.
 - We plan monthly meetings.
 - You are welcomed to join!
- Define the timeline and more realistic cost estimate.

	S
subjects	people working or interested in joining (no particular o 17 f)
overall design	Aki, Tomoko
emulsion film production, stability study (1 year scale), film size	Rokujo, Sto, La aki,
tungsten target	Zhen, time o,
interface detector, SCT or SciFi? (# of stations), integration to FASER2	Yosure, Hide, Tomohiro,
veto detector, integration to FASER2	Bran .
installation method, CAD design	need responsible with engineering team
detector support / assembly method	Shiba / Bern
cooling system (10 or 5 °C)	ubna?
emulsion development	Elena, …
readout system (HTS1/3?) (larger grain size?)	Nakano, Sato
readout system (HTS1/3 for FASERnu2?)	Aki,
simulation (muon + sweeper magnet)	Laurie, Alex, Daiki, …
simulation (geometry, reco)	Umut,
simulation (matching, charge ID,)	Yosuke, Tomohiro,
physics performances	with the theoretical WGs (contact persons: Tomoko, Aki)

Summary

- FASERv2 aims ~ $O(100) \times$ FASERv in interaction statistics.
- People are busy with ongoing FASER ν analyses.
 - FASER ν is demonstrating the FASER ν 2 concepts.
- Accelerating to form FASERv2 working group.
 - Monthly meetings will be held.
- Time scale: pre-CDR 2024, TDR 2026, funding 2027/28, construction 28-, data taking 2031-

Backup

ν detection and acceptance

- Vertex detection efficiency after requiring at least 5 charged particles
 - Using charged tracks and γ rays with p > 0.3 GeV and $\tan \theta < 1$ (relative to the neutrino direction)
 - − → may change to p > 1 GeV and tan $\theta < 0.5$

- Additional inefficiencies for v_{μ}
- 1. 400 mm tungsten from the most downstream layer would be used for μ ID (400 mm/3300 mm = 12%).

2. In addition, ~5.4% of μ^- (~3.5% of μ^+) will go side out before passing through enough material for the muon ID.

Detection of tau decays

- Special resolution of hits in the emulsion
 - 0.5 μ m (measured in the FASER ν pilot run data)
- \rightarrow Angular resolution with the arm length of 10 mm = $0.5 \times \sqrt{2}/10000 = \sim 0.1$ mrad
- To detect a kink,
 - tau should cross at least one emulsion layer,
 - kink angle should be larger than four times the angular resolution and more than 0.5 mrad
 - − → reasonable efficiency for τ decays (75% for 1-prong decays)

Emulsion readout systems

- Total emulsion film surface in FASERv2: ~530 m²/year
 - ~2400 h/year with HTS
 - or ~420 h/year with HTS2

	Field of view (mm ²)	Readout speed (m²/h/layer)			
S-UTS	0.04	0.0072			
HTS-1	25	0.45			
HTS-2	50	2.5			
HTS-3	?	?			

