

FASER2 Update

FPF6 Workshop 6/6/2023

scattering $\overrightarrow{}$ 2 inelasti

millicharged

particles

charm forward hadron production neutrinos indirect muon puzzle detection

Astroparticle Physics

intrinsic

ic Egge

F² **Baseline detector** | Geometry

Baseline

3 x 1m

Decay Volume

- Previous costing
 - Magnet based on SAMURAI Experimer
 - Tracker based on LHCb's SciFi
 - Calorimeter based on dual-readout technology

JL

	Cost
Magnet	10 MCHF
Tracker (SciFi)	4-6 MCHF
Calorimeter	3-5 MCHF
Total	~20 MCHF

GDML/Geant4 simulation created with pyg4ometry

Program for BSM and SM physics (main spectrometer to neutrino exps.) Currently considering, SciFi tracker and dual-readout calorimetry.

Magnet | Design

- SAMURAI Dipole Magnet is a good reference
 - Aperture: 88 cm x 340 cm
 - Field integral along beam axis: 7.0 Tm
- Estimation with reduced the magnetic field to 4 Tm
 - 3D simulation in progress for various designs with KEK experts (Naoyuki Sumi and Yasuhiro Makida)
- Also studying further reduced field to e.g. 2 Tm
 - Could potentially reduce a lot the magnet cost and complexity

Item	Unit	Value	Remarks
Magnet		Dipole magnet	
Magnetic field	т	2	
Magnetic path length	Τ·m	4.7	Rough estimation from SAMURAI
Stored energy	MJ	15	
Magnetic pole gap distance	mm	880	same as SAMURAI
Magnetic pole radius	mm	2000	circular poles
Coil		Solenoid	
Total weight	ton	400	

Jagnet | Logistics

- Assuming the specification of the SAMURAI magnet:
 - Crane load capacity (25 T) looks fine split yoke
 - Original SAMURAI magnet would not fit FPF but reduced magnetic field = reduced size
 - Water circulation to the surface from the FPF is preferred to release the heat from cryogenics

	Current design	Comments
Shaft transport space	2.2 m x 8 m	Sufficie
Shaft crane load capacity	30 T	Sufficient for
Cavern crane load capacity	30 T	Sufficient for
Cavern crane hight	4.1 m	4.6 m + one slice o
LoS from floor	1.5m	
LoS from the near wall	2.75m	
Total power consumption	2 MW	
Ventilation	Air circulation	Need wate

Magnet | Assembly

- Discussions with KEK experts about assembly
- Experience from previous SKS (Superconducting) Kaon Spectrometer) magnet in KEK.
 - Similar arrangement of yoke slices

Fig. 3. Schematic drawings of the SKS spectrometer magnet. The return yoke comprises 18 layers of iron plates.

F² **Tracker** | SciFi technology Based on SciFi detector installed in LHCb in LS2.

- SiPM+scintillating fibre design
- Fibres 250um diameter => 80um resolution.
- Each module consists of a mat of 4 fibres, with >99% efficiency.
- Costing done by scaling LHCb detector to the FASER2 design, and includes readout.
- Cost could be reduced by re-using tooling from LHCb if relevant institutes were involved.

The upstream tracker

- 6 vertical + 2 horizontal modules makes up a station.
- 3 stations.

- The stations should be relatively rotated e.g. 1 degree to maximize performance for multi tracks etc.
- Cost: ~3.8M CHF

The downstream tracker

- 7 vertical + 2 horizontal modules makes up a station.
- 3 stations.

Sune Jakobsen

Calorimeter | Dual-readout

- Existing dual-readout prototypes for Higgs factory detectors
 - EM prototype exists, construction of hadronic-size prototype ongoing
- FASER2 design and costing based on HiDRa "hadronic size" prototype INFN
 - Spacial Resolution: Tested with fibre diameter of 1mm, 2mm brass collar = ~5 mm resolution EM Energy resolution: $15/\sqrt{E} + \sim 1\%$ constant term

 - Particle ID: EM vs Hadronic vs MIP PID possible best performance with longitudinal information

F **Calorimeter** | Design & Simulation

Fully segmented design

Perpendicular crossing of EM layers

- Geometry implemented as part of a simple standalone G4 application
 - Heavily based on the test beam simulation of the bucatini calorimeter.

- Simulating $\pi^0 \rightarrow yy$ from 5m upstream of calorimeter
 - Similar topology to signal
 - x vs z shown (same) information in y vs z)

▶ 10 GeV:

- Width of each peak ~2 mm
- ▶ 100 GeV:
 - Same sampling fraction as expected
 - Threshold effects on resolution reduced

Calorimeter | LHCb preshower & SPD

- Possibility to reuse old LHCb Preshower and Scintillating Pad Detector for FASER2 Calo
 - Scintillator pads with wavelength shifter embedded.
 - ▶ Pad size depends on the location:12, 6 and 4 cm²
 - Pads supported on "super modules" with an active area of ~1 m x 5.8 m
- LHCb technical coord indicate they could store until year end.
 - Is slightly activated some storage/handling complexity.
- Simulation studies in progress to assess feasibility.

Software ACTS

Using ACTS for track reconstruction

Modern experimentindependent tracking toolkit based on LHC experience

- Tracking station simulated with homogenous material with accurate X₀
 - Dimension of the tracker: 1 m X 3m X 4 mm
 - Tracker resolution digitized as 100 µm
 - Constant BField of 1T in volume 1 m X 3 m X 4 m

Olivier Salin

Software Performance

- Studies of tracking performance for different metrics:
 - Resolution
 - momentum
 - mass
 - vertex
 - For different detector configurations:
 - Magnetic field strength
 - Magnetic field profile
 - Detector resolution
 - Detector alignment

Scope to reduce magnetic field and keep good performance

Olivier Salin

5 Software Performance

- Studies of tracking performance for different metrics:
 - Resolution
 - momentum
 - mass
 - vertex
 - For different detector configurations:
 - Magnetic field strength
 - Magnetic field profile
 - Detector resolution
 - Detector alignment

Very good performance observed even in conservative scenarios.

Olivier Salin

FASER2 Community

- for FASER2:
- Japan: FASER2 & FASERnu2 in process of being included in one of Grand Vision summarised by Science Council of Japan
- Not directly a budget request, but hoping to broaden funding possibilities US: FASER groups to look at applying for NSF funds for FASER2 detector work.
 - UCI, Washington, Oregon
- UK: Preparing Statement of Interest with STFC
 - Dual Readout/Tracking/Support structures/Simulation and Data analysis
 - Possible opportunity to exploit overlap with future collider R&D program
 - Liverpool, Manchester, Oxford, Sussex. (Interest also from RAL strong hardware experience)
- Community meeting in July on future prospects for UK PP where FPF will be further discussed. Geneva: Investigating options within Switzerland
- Will approach existing LHCb SciFi institutes about joining FASER2 studies.
- Expect increased involvement from existing FASER Collaboration

We are working to build and consolidate the community and possible funding routes

- Lots of progress made since change in baseline detector layout Very comparable sensitivity achievable with new baseline
- Studies on detector/magnet technology ramping up
 - Extended discussions with KEK experts on magnet design and construction
 - Tracker design and costing advanced building on experience from LHCb SciFi
 - Simulation and track reconstruction studies now quite advanced
 - Next steps to look at muon reconstruction from neutrino interactions
 - Calorimeter design developing with first simulation results
 - Possibility to use LHCb pre shower and SPD being investigated
- Several avenues for funding being pursued in Japan/US/UK

*F*² Calorimeter design and costing

Material	brass	• Calorimeter parameters:		
External diameter	2 mm	 Effective radiation length (brass + fiber + air) cm. 		
Internal diameter	1 mm	• Effective Moliere radius: 1.97 cm.		
		 EM section readout: 1 channel per fiber 		
Cost of fibre per	1 euros	 Spacial resolution o(1x1x1 mm³) 		
meter		•Had section: granularity less important.		
Cost of brass per	0.30 euros	bundle many fibres in one traditional PMT		
meter	0.00 00100	•At this point, cost extrapolated based		
Cost of SiPM (relevant only for EM section)	7 euros	assumed length width/height/depth of HAD sections		
FERS cost	5000 euro/unit	 Assuming same width/height for EM and section. 		
FERS readout	512 SiPM			

F² Calorimeter design and costing

Costing Option 1

- EM section 2 m x 2 m x 37 cm (15 X0) (1.85e5 2 m elements)
 - Cost of brass + fibers: 380 k euros
 - Cost of SiPM (1 per element): 1.3 M euros
 - (Cost of FERS: 12.7 M will need optimisation)
- ► HAD section 2 m x 2 m x 2.5 m (1e6 elements)
 - Cost of brass + fibers: 3.2 M euros
 - (Readout cost small w.r.t. EM section)
- Total (excluding EM FE and HAD readout): ~4.8 M euros

F² Calorimeter design and costing Option 2

- EM section 1.5 m x 1.5 m x 37 cm (15 X0) (1.39e5 1.5 m elements):
 - Cost of brass + fibers: 260 k euros
 - Cost of SiPM (1 per element): 970 k euros
 - (Cost of FERS: 9 M will need optimisation)
- HAD section 1.5 m x 1.5 m x 2.5 m (5.6e5 elements)
 - Cost of brass + fibers: 1.8 M euros
 - (Readout cost small w.r.t. EM section)
- Total (excluding EM FE and HAD readout): ~3.0 M euros

F² Tracker design and costing

- Based on SciFi detector installed in LHCb in LS2.
 - SiPM+scintillating fibre design
 - Fibres 250um diamater => 80um resolution.
- Each module consists of a mat of 4 fibres, with >99% efficiency.
- Costing done by scaling LHCb detector to the FASER2 design, and includes readout.
- Cost could be reduced by re-using tooling from LHCb if relevant institutes were involved.

F² SciFi design and costing

The upstream tracker

- 6 vertical + 2 horizontal modules makes up a station.
- 3 stations.

- The stations should be relatively rotated e.g. 1 degree to maximize performance for multi tracks etc.
- Cost: ~3.8M CHF

The downstream tracker 7 vertical + 2 horizontal modules makes up a station. 3 stations. Sune Jakobsen

F² SciFi design and costing

The upstream tracker

6 vertical + 2 horizontal modules makes up a station.

6 stations.

The stations should be relatively rotated e.g. 1 degree to maximize performance for multi tracks etc.

Cost: ~6.7M CHF

The downstream tracker

7 vertical + 2 horizontal modules makes up a station.

6 stations.

Sune Jakobsen

F² SciFi design and costing

The upstream tracker

- 6 vertical + 2 horizontal modules makes up a station.
- 3 stations.
- 2 extra station with only vertical modules.

- The stations should be relatively rotated e.g. 1 degree to maximize performance for multi tracks etc.
- Cost: ~6.3M CHF

The downstream tracker

- 7 vertical + 2 horizontal modules makes up a station.
- 3 stations, Aperture covered: 3.5 m x 1 m.
- 2 extra station with only vertical modules.

Sune Jakobsen

Calorimeter | Dual-readout

- Design based on Dual Readout calorimeter design
 - Being studied in context of e+e- Higgs factories
- Spacial Resolution:
 - Tested with fibre diameter of 1mm. 2mm brass collar.
 - So ~5 mm resolution possible.
- EM Energy resolution: $15/\sqrt{E} + \sim 1\%$ constant term

Particle ID

EM vs Hadronic vs MIP PID possible - best performance would need longitudinal information.

F2 Calorimeter design

- Costing from existing prototypes
 - EM prototype exists, construction of hadronic-size prototype ongoing
 - Costing based on HiDRa "hadronic size" prototype INFN
 - 65x65x250 cm (presentation)
 - Aiming for 2023 construction and test beam

Iacopo Vivarelli

F² Calorimeter design and costing

Fully segmented design

- Perpendicular crossing of EM layers
- Don't need dual readout no Cherenkov fibres
- Very preliminary costing for 2m and 1.5m diameter aperture

Costing Option 1:

- EM section 2 m x 2 m x 37 cm (15 X0) (1.85e5 2 m elements)
- ► HAD section 2 m x 2 m x 2.5 m (1e6 elements)
- Total (excluding EM FE and HAD readout): ~4.8 M euros

Costing Option 2:

- EM section 1.5 m x 1.5 m x 37 cm (15 X0) (1.39e5 1.5 m elements):
- HAD section 1.5 m x 1.5 m x 2.5 m (5.6e5 elements)
- Total (excluding EM FE and HAD readout): ~3.0 M euros

Iacopo Vivarelli

	*	*	*	*	•
		-		-	•
2					•
\mathcal{D}	~	5	~	-	•
/			\geq	2	•
/	/	/	/	3	•
/				2	•
/	/	/	/	٢.	•
/	/			2	•
/	/	/		3	•
/		/	/	<u>٢</u>	•
/	/			3	•
		/	/	7	•
/	/	/			•
/				-	•
					•
					•
	•				•
					•
					•
	•	-			•
					•
					•
					•

T² Track momentum resolution

- Studying track momentum resolution and charge misconstruction rate
- for particle propagation in field

 - planned

Based on sampling assuming 100um resolution using analytic calculation

Josh McFayden | FPF6 |

Track momentum resolution

2 Tm

e<

2.5

- Studying track momentum resolution and charge misconstruction rate
- for particle propagation in field
- Early studies encouraging
 - Further studies on alignment planned

Based on sampling assuming 100um resolution using analytic calculation

Josh McFayden | FPF6 |

Track momentum resolution

- Studying track momentum resolution and charge misconstruction rate
- for particle propagation in field

 - planned

Based on sampling assuming 100um resolution using analytic calculation

Josh McFayden | FPF6 |

+0 um
4 = +100 um
4 = +250 um

F2 ACTs implementation

- Need more study on FASER2 mass and pointing reconstruction capabilities
- Starting to implement more sophisticated reconstruction framework based on ACTS
 - Used in LHC experiments including FASER, well supported.
- Working on implement SciFi tracker geometry and interfacing with FORESEE outputs

Josh McFayden | FPF6 | 6/6/2023

2 m

Olivier Salin

Summary of detector costings

Very preliminary overall costing of FASER2 Cost driven by magnet

	Cost
lagnet	10 MCHF
racker (SciFi)	4-6 MCHF
alorimeter	3-5 MCHF
otal	~20 MCHF

Magnets | Split solenoid dipole

Split solenoid

- Simplest design for superconducting dipole
- Design for CMB experiment at FAIR
- Use single strand superconductor
- Easier thermal properties and available on market
- ITM bending power, aperture ~1x1x1m (TBC), stored energy 51
- Cost from industry (Bilfinger):
 - ▶ 3MCHF bare magnet, 4-4.5MCHF with PS/controls (not cryo)

Much more expensive for much less performance than we planning for

Number of turns per coil174Windings of coilImpclosMaximum current686Magnetomotive force1.2Current density,58 AMaximum field at coil3.25	
Windings of coilImp closMaximum current686Magnetomotive force1.2Current density,58 AMaximum field at coil3.25	9
closMaximum current686Magnetomotive force1.2Current density,58 AMaximum field at coil3.25	regna
Maximum current686Magnetomotive force1.2Current density,58 AMaximum field at coil3.25	e coil
Magnetomotive force1.2Current density,58 AMaximum field at coil3.25	Α
Current density,58 AMaximum field at coil3.25	MA tı
Maximum field at coil 3.25	A/mm
	5 T
Central field 1.08	8 T
Field integral1 Tr	n
Inductance 33-1	19 H
Stored energy 5.15	5 MJ
Coil cross section (at 4K) 158	.8x13
Yoke (widh/depth/height) 4.4/	2.0/3.
Pole type Tape	ered
Pole sizes (Rout/Rin/H) 120	0/000

F² **FASER2 Reach**

[arXiv:1811.12522]

F² **FASER2 Reach**

[arXiv:1811.12522]

F² **FASER2 Reach**

[arXiv:1811.12522]

FASER2 Design

- Design considerations for FASER2
 - Larger radius
 - More decay channels \rightarrow Need for particle ID
 - Larger detector
 - Link to FASERv2

- → Being on-axis less important
- → Larger background rate
- → Different/cheaper technology
- → Measure µ charge (and momentum) from (τ and μ) neutrino interactions

- Planned to be similar in philosophy to FASER...
 - Still much to be studied in terms of possible detector configurations and technologies.

[arXiv:2109.10905]

Simulation | FORESEE

- Starting to use FORESEE ar investigate reach
 - Production modes rather diff
 - Pion decay at low mass
 - Then eta decay
 - Then Dark Bremsstrahlung

Questions to ask

To see a signal	Translates to requirements in detector	Translates to detector technologies
· Generic S/B	Magnet strength and length ??	
Pointing / z measurements	 Tracker resolution ?? Alignment requirements?? Timing? 	Pixels vs SciFi or a combination
 Mass reconstruction for "bump hunt"? Out of time signal? 	Track / Calorimeter resolution ?? Timing?	 High granularity calo vs Dual Calo read-out
 Track separation from what station? 		
Photon ID and separation?	Calorimeter / preshower resolution?	
 Can we do anything with MET? 		
To characterise signal if you see it	To characterise signal if you see it	To characterise signal if you see it.
• PID ?	Timing ??	CMOS with timing
Mass measurements	Tracker resolution ??	
Backgrounds		
Trigger rates?	 # Scintillator layers?? 	

E Benchmark models?

Model	Unique in FASER2	Decay mode in FASER	Decay mode in FASER 2	Unique coverage
Dark Photons		ee	ee, <mark>hadrons</mark> , μμ	++
B-L Gauge bosons	X	ee	ee, hadrons, μμ, MET (dom low mass)	++
Dark Higgs Bosons	X		ee, pions, μμ, kaons, jets	+++
HNLs with e	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with μ	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with τ	X		MET + ee, MET (dom low mass), hadrons	+++
ALPs in photons		γγ	ΥΥ	++
ALPs in fermions	X		ee, μμ, <mark>jets</mark>	+++
ALPs in gluons	X		γγ, hadrons	+
Dark pseudoscalars	X		γγ, ee, μμ, hadrons, jets	++
OTHER???				

Anna Sfyrla (UniGe)

E Benchmark models?

Model	Unique in FASER2	Decay mode in FASER	Decay mode in FASER 2	Unique coverage
Dark Photons		ee	ee, <mark>hadrons</mark> , μμ	++
B-L Gauge bosons	X	ee	ee, hadrons, μμ, MET (dom low mass)	++
Dark Higgs Bosons	X		ee, pions, μμ, kaons, <mark>jets</mark>	+++
HNLs with e	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with μ	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with τ	X		MET + ee, MET (dom low mass), hadrons	+++
ALPs in photons		ΥΥ	ΥΥ	++
ALPs in fermions	X		ee, μμ, <mark>jets</mark>	+++
ALPs in gluons	X		γγ, hadrons	+
Dark pseudoscalars	X		γγ, ee, μμ, hadrons, jets	++
OTHER???				

Anna Sfyrla (UniGe)

E Benchmark models?

Model	Unique in FASER2	Decay mode in FASER	Decay mode in FASER 2	Unique coverage
Dark Photons		ee	ee, <mark>hadrons</mark> , μμ	++
B-L Gauge bosons	X	ee	ee, hadrons, μμ, MET (dom low mass)	++
Dark Higgs Bosons	X		ee, pions, μμ, kaons, <mark>jets</mark>	+++
HNLs with e	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with μ	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with τ	X		MET + ee, MET (dom low mass), hadrons	+++
ALPs in photons		ΥΥ	ΥΥ	++
ALPs in fermions	X		ee, μμ, <mark>jets</mark>	+++
ALPs in gluons	X		γγ, hadrons	+
Dark pseudoscalars	X		γγ, ee, μμ, hadrons, jets	++
OTHER???				

Anna Sfyrla (UniGe)

F² Benchmark models?

- physics cases we want to study.
- That cover various final states of interest
 - Cover different decay modes
- That have "large enough" cross sections that are not hopeless
 - Scan mass range accessible in current reach estimates
 - But also look at phase-space outside top of existing excluded region
- Also consider different kinematic regions Higher and lower LLP energies

Select benchmark model points that can be used as "representative" of the

Example 72 Benchmark models?

Example 72 Benchmark models?

Benchmark models?

Example 72 Benchmark models?

