Constraining neutrino fluxes with the FPF data for SM and BSM studies

Toni Mäkelä, Felix Kling, Sebastian Trojanowski

FPF6 8-9.6.2023 NATIONAL SCIENCE CENTRE POLAND

Introduction

- The FPF has a broad physics scope, in which neutrinos play an important role
- Various BSM effects could affect the shape / magnitude of the neutrino spectra. We could look at e.g.:
 - Oscillations
 - Enhanced tau neutrino production from dark vectors
 - Solving the cosmic ray muon excess puzzle
 - ...etc
- To see how well such models can be constrained, we need to estimate the uncertainty of neutrino flux predictions
 - Important step in understanding SM and the stream towards refining BSM searches

Introduction

- Examine various predictions for the neutrino spectra
 - A broad envelope of established predictions from various groups:
 - Different generators and methods
 - Seek to cover the phase space with these broadly spread predictions:
 - Enables accommodating for possible changes in shape and normalization
- Presenting a model / tool for combining these
 - Using a Fisher information approach for estimating uncertainties
 - Indicates FPFs constraining power for various physics processes

• Construct a model *m* giving amount of neutrinos as an average over all N_g predictions *G*

$$m(\{\lambda_i\}_{i=1}^{N_g-1}) = \frac{1}{N_g} \left[G_0 \left(1 - \sum_{i=1}^{N_g-1} \lambda_i \right) + \sum_{i=1}^{N_g-1} G_i \left(1 + N_g \lambda_i - \sum_{j=1}^{N_g-1} \lambda_j \right) \right]$$

- N_g -1 parameters λ steer the result towards any prediction

Construct a model *m* giving amount of neutrinos as an average over all N_q • predictions G 1 Γ N_g-1 N_g-1 N_g-1 N_g-1 Setting all $\lambda=0$

$$m(\{\lambda_i\}_{i=1}^{N_g-1}) = \frac{1}{N_g} \left[G_0 \left(1 - \sum_{i=1}^{N_g} \lambda_i \right) + \sum_{i=1}^{N_g} G_i \left(1 + N_g \lambda_i - \sum_{j=1}^{N_g} \lambda_j \right) \right]$$
 mean, taken as the baseline

- N_q -1 parameters λ steer the result towards any prediction

model

Construct a model m giving amount of neutrinos as an average over all N_a • predictions G $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $Setting all \lambda=0$

$$m(\{\lambda_i\}_{i=1}^{N_g-1}) = \frac{1}{N_g} \left[G_0 \left(1 - \sum_{i=1}^s \lambda_i \right) + \sum_{i=1}^s G_i \left(1 + N_g \lambda_i - \sum_{j=1}^s \lambda_j \right) \right]$$
returns the mean, taken as the baseline

- N_{a} -1 parameters λ steer the result towards any prediction

model

By The Cramér-Rao bound, the covariance matrix corresponding to the • highest obtainable precision is obtained as the inverse of the Fisher *information I_{ii}*, approximated as the Hessian of the log likelihood ratio

$$-\frac{d^2\log r}{d\lambda^i d\lambda^j} \Delta\lambda^i \Delta\lambda^j = I_{ij} \Delta\lambda^i \Delta\lambda^j$$

Construct a model m giving amount of neutrinos as an average over all N_a • predictions G $N_{q}-1$, $N_{q}-1$, Setting all $\lambda=0$

$$m(\{\lambda_i\}_{i=1}^{N_g-1}) = \frac{1}{N_g} \left[G_0 \left(1 - \sum_{i=1}^g \lambda_i \right) + \sum_{i=1}^g G_i \left(1 + N_g \lambda_i - \sum_{j=1}^g \lambda_j \right) \right]$$
returns the mean, taken as the baseline

- N_{a} -1 parameters λ steer the result towards any prediction

model

By The Cramér-Rao bound, the covariance matrix corresponding to the ۲ highest obtainable precision is obtained as the inverse of the Fisher *information I_{ii}*, approximated as the Hessian of the log likelihood ratio

$$-\frac{d^2\log r}{d\lambda^i d\lambda^j} \Delta \lambda^i \Delta \lambda^j = I_{ij} \Delta \lambda^i \Delta \lambda^j$$

$$r(\lambda^{\pi}, \lambda^{K}, \lambda^{c}) = \frac{L(\text{expected data}|\lambda^{\pi}, \lambda^{K}, \lambda^{c})}{L(\text{expected data}|\lambda^{\pi} = 0, \lambda^{K} = 0, \lambda^{c} = 0)}$$
Poisson distributions;
examine differences between any set of λ s and the baseline

Construct a model m giving amount of neutrinos as an average over all N_a • predictions G $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$ $N_{g}-1$

$$m(\{\lambda_i\}_{i=1}^{N_g-1}) = \frac{1}{N_g} \left[G_0 \left(1 - \sum_{i=1}^s \lambda_i \right) + \sum_{i=1}^s G_i \left(1 + N_g \lambda_i - \sum_{j=1}^s \lambda_j \right) \right]$$
returns the mean, taken as the baseline

- N_q -1 parameters λ steer the result towards any prediction

model

By The Cramér-Rao bound, the covariance matrix corresponding to the • highest obtainable precision is obtained as the inverse of the Fisher information I_{ii}, approximated as the Hessian of the log likelihood ratio

$$-\frac{d^2\log r}{d\lambda^i d\lambda^j} \Delta \lambda^i \Delta \lambda^j = I_{ij} \Delta \lambda^i \Delta \lambda^j$$

$$r(\lambda^{\pi}, \lambda^{K}, \lambda^{c}) = \frac{L(\text{expected data}|\lambda^{\pi}, \lambda^{K}, \lambda^{c})}{L(\text{expected data}|\lambda^{\pi} = 0, \lambda^{K} = 0, \lambda^{c} = 0)}$$
Poisson distributions;
9.6.2023 examine differences b
any set of λ s and the k

- **Obtain info matrix**
- **Perform eigenvector analysis** Uncertainties!
 - examine differences between any set of λ s and the baseline

NCBJ

Enhanced strangeness

NCBJ

• Reweigh pion counts by $(1 - f_s)$, kaons by $(1 + f_s F)$, $F = N_{\pi}^{TOT} / N_{\kappa}^{TOT}$

Summary and outlook

- We have presented a model and machinery for evaluating the impact of various physics effects on neutrino spectra at FPF
 - Possible to estimate ultimate precision achievable at FPF
- Allows studying enhanced strangeness, gluon saturation etc
 - Physics goals not limited to SM!
- Proceed to applying the tool to BSM studies:
 - oscillations in the presence of heavy sterile neutrinos
 - BSM enhanced production of tau neutrinos e.g., due to the presence of light tau-philic gauge bosons charged under $U(1)_{B-3L\tau}$

Thanks for your attention!

Gluon saturation

