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Preface

This Handbook is a product of the world community of accelerator physicists and engineers.
The first edition was issued September, 1998, a second edition in July 2012, and a third edition
in December 2022. With the continued advancing of the accelerator field, a third edition
appears now in order.

This is not a textbook but rather a collection of information useful to professionals in research,
design, construction, and operation of accelerators. The Handbook has been prepared by more
than 200 experienced experts from across the spectrum of accelerator related institutions and
to them sincere thanks are due.

In addition to content, a high priority has been given to portability of the book. This has led to
a sacrifice of some aesthetics in order to make the text as compact as possible. For that, our
apologies go to users and authors alike.

Singularly important are the references to be found at the end of each subsection. Here the
user will find locations of tutorial material as well as reliable detail for further reading. The
references are not intended to be exhaustive or to indicate priority of discovery or invention,
but rather to provide a reliable lead into the literature. In addition, a detailed index gives
access to occurrences of important subjects and concepts to be found herein.



Preface cont’d

The fees and royalties that would normally be paid to authors and editors are

donated to provide scholarships to the CERN Accelerator School and to the US
Particle Accelerator School.

Authors and Editors have made great efforts to find and eliminate errors.

Nevertheless we recognize that there will be errors and have provided for errata to
appear on a Handbook website:

https://www.worldscientific.com/worldscibooks/10.1142/13229

Please help in this community effort by sending suggestions for corrections by e-mail
to the address frank.zimmermann@cern.ch


https://www.worldscientific.com/worldscibooks/10.1142/13229

major changes

We removed chapter 8 “Radiation effects and protection” except for 8.7 Rad. Damage Thresholds
(integrated not Chapter) — chapters 8 from 15t and 2" edition continue to serve as a reference

We updated, added or extended many new and “hot” topics, e.g.:
LHC, SuperKEKB, RHIC operation etc.
CLIC& CTF3

SC proton linacs

SC e- linacs

EIC, FCC, CEPC

Ultimate storage rings

Advanced FEL schemes

Ultrafast electron diffraction

Top-up injection

Emittance exchange

Multiple frequency rf systems
Machine learning for accelerators
Gamma factory
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1.6.16 Muon MDM and proton EDM tests
L. Gibbons, R. Talman, Cornell U.

Motivation for precise dipole moment mea-
surements Apart from the fundamental charge
e and the Planck constant 7 (that can only be fixed
by experimental measurement), the most persua-
sive tests of fundamental physics come from the
precise comparison of physical constants that can
be calculated theoretically and measured exper-
imentally with comparably high precision. The
pre-eminent example is the electron magnetic
dipole moment (MDM) (i, for which the theoreti-
cal and experimental determinations differ only in
the 13th decimal place [1].

1.6.15 Muon Collider
N. Pastrone, INFN-Torino
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Figure 1: Luminosity per MW of beam power for a
proton-based muon collider compared to CLIC, at dif-
ferent centre of mass energy per interaction point. For
CLIC the full luminosity is given: at 3 TeV the ef-
fects of beamstrahlung increasing with centre-of-mass
energy is evident. The muon collider luminosity per
power is expected to increase linearly with energy be-
yond 6 TeV.




2.4.6.3 Space charge nonlinear resonances

G. Franchetti, GSI
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Figure 2: Experimental beam response to 1-D error
resonances. Top) with a normal fourth-order resonance
carried out at the CERN-PS [8, 9]: Bottom) with a 1-D
normal third-order resonance, carried out at the SIS18
at GSI [10].
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Figure 4: Beam loss by a space charge driven structure
resonance [14]. The top picture shows a beam loss
over ~ 500 ms storage with a resonance overlapping
varied by changing v,9. The bottom picture shows the
same beam crossing for a changed optics and with no
beam loss.
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Figure 3: Beam response to a third-order normal cou-
pled resonance excited by a controlled sextupole. The
experiment was conducted at the CERN-PS [11]. Left)
response to the change of v,0, being v, kept fixed.
Right) beam response at the largest vertical emittance
growth.
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Figure 1: The Montague resonance. Beam emittances
after the Montague resonance crossing (full markers,
black for horizontal, and magenta for vertical emit-
tance), with empty markers the simulation modeling
of the experiment [5].




2.3.11 Integrable Optics Test Accelerator 2.7 BEAM COOLING
S. Nagaitsev, A. Valishev, FNAL

2.7.1 Stochastic Cooling
M. Blaskiewicz, BNL
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Figure 1: Schematic of OSC: wigglers and optical el-
ements are in green, dipoles are red and focusing ele-
ments are magenta. The envelope of the light is black.

Figure 2: Observed image of beam in the NIO lattice
at an integer resonance. Overlaid black contour lines
show theoretical nonlinear equipotentials.




2.7.3 Coherent Electron Cooling
G. Stupakov, SLAC

Figure 1: Schematic of a coherent electron cooling
system. Blue lines show the path of the electron beam
and red lines indicate the hadron trajectory. The am-
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Figure 2: Hadron energy change in the kicker (in
electron-volts) as a function of its position z relative
to the center of the imprint in the electron beam that a
hadron created in the modulator,




3.1.13 Ultrafast Electron Diffraction and
Microscopy
D. Xiang, Shanghai Jiao Tong U.

MeV ultrafast electron diffraction (UED) and
microscopy (UEM) in which the dynamics are
driven by a laser and then probed by a delayed

3.1.9 Steady State Microbunching Sources
A.W. Chao, Stanford U.

SSMB was proposed and evolved as a mechanism
for high average power radiation sources in fre-
quency range from THz to EUV [1, 2, 3, 4, 5].
The electron beam is modulated by a laser in a
storage ring in such a way that the beam becomes
microbunched. A steady state is established just
like the case of a conventional storage ring except
that the bunch spacing i1s given by the mod-
ulation laser wavelength A,, instead of a con-
ventional RF wavelength. This represents an
extrapolation of six orders of magnitude in bunch
spacing but the mechanism of the steady state i1s
the same, 1.e. a balance between radiation damp-
ing and quantum excitation. The equilibrium
bunch length o, < A,,. The beam is mi-
crobunched.




4.1 LUMINOSITY
M.A. Furman, LBNL
M.S. Zisman, Deceased 2015
F. Antoniou, Y. Papaphilippou, CERN Delivered Luminosity 2013

Preliminary

-+ ATLAS : 63.39 fb-1
-+ CMS : 66.85 fb-1
= LHCb : 2.46 fb-1
- ALICE : 0.0273 fb-1
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Figure 12: LHC peak luminosity for p—p collisions as
observed during 2018 at the four detectors [44].




3.3.11 Beam Collimation
R. Assmann, DESY
S. Redaelli, CERN
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Figure 1: Stored beam energy for different electron
(round symbol) and proton (square symbol) accelera-
tors, already achieved (full symbol) or future project
(empty symbol).
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Figure 15: Example measurement of collimation per-
formance in the LHC at 4 TeV [26]. The data show
peak integrated losses over 1.3 s. A beam loss in the
horizontal plane is provoked for the clockwise beam
through an emittance blowup. Losses are normalized
to the peak loss in the ring that occur, as expected, at
the betatron collimators.




3.3.2 Beam and Luminosity Lifetime

3.3.2.1 Protons
N.V. Mokhov, V.I. Balbekov, FNAL
F. Antoniou, Y. Papaphilippou, CERN

The [uminosity lifetime in colliders depends on
several interleaved effects iz, which impact the
beam lifetime (i.e. intensity degradation) and
emittance evolution (usually growth). The total
lifetime Tiota1 can be defined by summing up the
various effect z,

1

Ttotal

(1)

150 Effective cross Section at ¢/2 = 140 yrad @ SB 2018
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Figure 4: Effective cross section for LHC Beam 1
(blue) and 2 (red) vs. Fill Number for ¢/2 = 140 prad

half crossing angle. The inelastic p-p cross section is
shown by the black dashed line [13].
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Figure 5: Simulated LHC intensity evolution without

power supply ripple (black), and including power sup-
ply ripple spectrum of Beam 1 (blue) and 2 (red) [14].




3.3.2.3 Heavy ions
J.M. Jowett, M. Schaumann, CERN

Beam lifetime and emittance growth Beam
and luminosity lifetime in relativistic heavy-ion
storage rings and colliders [1] are generally
shorter than in proton machines because the ef-
fects listed in Sec. 3.3.2.1 scale with powers of
the atomic number Z and the nucleon number A
of the beam particles (assuming the same mag-

netic field). On the other hand, radiation damping
(~ Z*/A?) can be faster (Sec. 3.1.5.2).

LIRS
1EMDiot
!
EMI]

[EMD2

Figure 7: Cross-sections vs. atomic number Z for
equal nuclei colliding at LHC top energy 77 TeV.

where 0.0 = (2.41,0.478,2.40)ub and A =
(1.071,1.363,1.167) for the 1n, 2n channels and
the total of all EMD processes, respectively.

The total effect on the beam lifetime is given
by the sum of these cross-section in each IP where
the 1on beams collide

N
e (0BFPP + TEMDtot + Thin) N
(29)




4.10.2 Injection Schemes for Ultimate
Storage Ring [1]
M. Aﬂ:‘-‘ﬂ, PSI 0 turn
100 turns
200 turns
1000 turns
2000 turns
7000 turns
18000 turns

Top-up operation nowadays is the norm for
lepton colliders and synchrotron radiation light
sources to maximize the integrated luminosity
(see Sec. 3.3.2.2, lifetime mitigation) or the av-
erage photon fl--— Tt ot boed o obemee e

Acceptance

Kickar
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® % 8 € 8 B0 g% g% gt e g Figure 2: Tracking simulation of longitudinal injec-
tion [8].
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Figure 1: Turn-by-turn stored beam profiles ir
conventional, pulsed-sextupole-magnet, and pulsed
quadrupole-magnet injections [6].




4.11.1 Design & Operational Considerations
for Beam-Beam Effects in Circular
Colliders
D. Shatilov, BINP

A. Valishev, Fermilab

Figure 2: Luminosity of CW collider as a function of
betatron tunes, a scale from blue (minimum) to red
(maximum). Results of simulations in a simplified
weak-strong model, where the strong bunch is not af-

0264

Figure 4: FMA simulation of HL-LHC beam tune
distribution superimposed onto a resonance line plot.
The color chart shows the logarithm of tune diffusion.
Long-range effects intentionally enhanced by reduced
crossing angle.




4.11.3 Beam-Beam Compensation Schemes
V. Shiltsev, FNAL

G. Sterbini, CERN

p+ beam lens
defocuses

Figure 2: Head-on beam-beam compensation in phase
space view. A defocusing kick Ar}’,p a proton receives
from the other proton beam is reversed by a focus-
ing kick Ar;,(. from the electron lens after a phase ad-

vance .
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Figure 3: Narrowing of proton tune distribution by the
RHIC electron lens, measured for p- Al collisions. The
width of the distribution caused by two beam-beam
collisions shrinks when increasing the electron lens
current up to 1.03 A [9].




4.9.3.2 Double rf systems in hadron rings
E. Shaposhnikova, CERN

Parameters of a double rf system In hadron

Single RF

Figure 1: Examples of total rf voltage V(&) (top), rf
potential [/ (¢) and particle trajectories in longitudinal
phase space in single (left) and double rf system in BL-
mode (middle) and BS-mode (right) for a stationary
case (no acceleration) withn = 2 and r = 1/2.

BL-mode

Figure 2: Synchronous phase shift Ag¢, (left) and relative change in synchrotron frequency A f,(0)/ fso (right) as

functions of phase shift ®,, in double rf system for a stationary case (no acceleration) above transition withn = 4
andr = 1/4.
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Figure 3: Synchrotron frequency f.(®,)/fso as a function of phase amplitude ¢, in stationary case with single
(blue) and double rf systems for different 2 or » = 1/n in BS (left) and BL mode (right).



4.9.3.3 Multiple rf systems for unequal bunch
lengths in electron rings [1]-[3]
M. Ries, A. Matveenko, HZB

Using multiple and fractional rf frequency har-
monics bunches of different lengths can be pro-
vided simultaneously.

Figure 1: Top: voltage beating of a fundamental rf with
a 3.5th harmonic, voltage U is normalized in units of
fundamental rf voltage. Bottom: longitudinal phase
space; target buckets are colored blue (adding gradient,
i.e. short bunches) and orange (compensating gradient,
i.e. long bunches). Momentum deviation b=206 f0aec18
normalized in units of momentum acceptance without
harmonics.

Figure 2: Top: voltage beating of a fundamental rf with
a 3rd harmonic and 3.5th harmonic, voltage U is nor-
malized in units of fundamental rf voltage. Bottom:
longitudinal phase space, target buckets are colored
blue (adding gradient, i.e. short bunches) and orange
(compensating gradient, i.e. long bunches). Momen-
tum deviation 6 = & /0acco is normalized in units of
momentum acceptance without harmonics.




3.1.11 Advanced FEL schemes (1) HGHG

Z. Huang, SLAC

One of the main drawbacks for SASE is the
lack of temporal coherence due to the shot noise
startup. Thus, SASE X-ray pulses exhibit many
temporal spikes and shot-to-shot intensity fluc-
tuations. To imprgve the SASE tempgra] co- Figure 1: Schematic of HGHG and EEHG FELs. M
herence and stability, many advanced techniques (R) stands for modulator (radiator).

have been invented. The most straightforward SCRF Linac

way 18 to directly seed the FEL process with a /
laser. Nevertheless, the wavelength of conven-
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- ; f Figure 3: Layout of a cavity-based XFEL facility with
: ; 1 N a tunable x-ray cavity [29].
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Figure 2: a) 1,000 SASE and self-seeded (SS) FEL Fourier-transform limited x-ray pulses with much better

spectra measured at PAL-XFEL by a single-shot spec- bandwidth and stability than the single-pass FELs. Experiments

trometer. b) SASE and SS spectra averaged over 1,000 JEEISNSREIE[aloNAVE (SN EVRCE] R (o R (<INl { s T-N-INYTlEIN=I ] [lo i R {o]g

shots (photon energy E. = 9.7 keV) [24]. a cavity- based XFEL are in the advanced planning stage with
first results expected in 2024




3.1.15 Gamma Factory
M.W. Krasny, LPNHE and CERN

Gamma Factory (GF) [1] is a proposal of a new
operation mode of the CERN accelerator com-
plex. It aims to produce, accelerate, cool, and
store atomic beams of partially stripped ions (PSI)
and, subsequently, collide them with laser-light
pulses. Atomic degrees of freedom of the beam
particles, resonantly excited by laser photons, are
used to produce secondary beams of gamma rays.
These beams as well as the tertiary beams of pi-
ons, muons, positrons, neutrons and radioactive

Ch.3: ELECTROMAGNETIC AND NUCLEAR INTERACTIONS

ymv 3 liky B ik
lik
Nr'\_.f\ulﬂ\ﬁ&f . . }rk,n

A v + hik ~vmv + hk — Rk

o

Fhoton absorption Excited ion Photon emission

Figure 2: The Gamma Factory concept. Laser photons with the momentum /% collide with ultrarelativistic

partially stripped ions (with the relativistic Lorentz factor vz, mass m, velocity v = ¢3, where [ is the light
velocity) circulating in a storage ring. Resonantly scattered photons are emitted in a narrow cone with an opening
angle ~ 1/ in the direction of the motion of the PSI beam.
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where g1, g2 are the degeneracy factors of the
ground and excited states, respectively. Equa-
tion (4) can thus be rewritten as
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4.3.3 Operation of High Power Proton
H~ Linacs
A. Aleksandrov, ORNL
S. Henderson, JLAB
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.5 LINEAR-COLLIDER FINAL
4.6 TWO-BEAM ACCELERATORS FOCUS SYSTEMS

R. Corsini, CERN A.A. Seryi, JAI

G.R. White, SLAC e
R. Tomds, CERN A
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Figure 2: Layout of the CTF3 facility.
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Figure 3: The minimum IP vertical beam sizes ob-

tained from 2012 to 2020 [16].




4.8.3 Machine Learning for Accelerators
D. Ratner, A. Edelen, SLAC

E. Fol, CERN

-
-

This brief survey of machine learning (ML) for
accelerator physics is broken into three sections:
an introduction to selected ML methods, a de-
scription of applications to accelerators, and a dis-
cussion of best practices for applied ML. The text

=

Totu Boam Tive horw

VN Camr N1 Camm 002 Corm, 8N Lo W Cowe 207 Comm 2008 Comm 200 VD Parstiel

p S Figure 2: Comparison of the time required to align
Artificial Intelligence LHC collimators for beam commissioning before and

after introducing ML-based automation [17].

Neural Networks

Deep Learning ' pvis | | ouputbesm |
Simulations | parameters l
< Small set Smoll set T —

of inputs

7 N\
Run full optimization |
of accelerator
settings

Mathematical Optimization
Figure 3: Conceptual representation of using a sur-

rogate model to speed up accelerator design (adapted

Figure 1: Taxonomy of artificial intelligence and opti- )
from [19]).

mization related topics.




Table 1: Key parameters of the electron-ion colliders HERA, EIC, and LLHeC.
4.12 DESIGN ISSUES FOR yP

ELECTRON-ION COLLIDERS HERA EIC

LHeC

S operating energy (e/p) [GeV] 27.5/920 10(18)/275
C. Mﬂﬂfﬂg, V.pP nisyn, BNL design scheme ring-ring ring-ring

RMS bunch length (e/p) [cm] 1/16 1/6
distance from IP to first quadrupole [m] 2.0 5.3
average beam current (e/p) [A] 0.045/0.1 2.5/1

RMS beam size at IP (x/y) um 127727 05/8.5
maximum luminosity [ecm 2 s~ '], 1072 0.5 100

status operated under construction

50/7000
linac-ring
0.6/7.5
15
0.02/1.1
5/5
90
proposed

average voltage gain per turn [MV]

4.13.1 Operational Limits in High-Intensity " w5 L D

scaling law |, == N

Hadron Accelerators
V. Shiltsev, FNAL
(r. Franchetti, GSI

200 250 300 350 400 450
turns in Ring Cyclotron

Figure 2: Maximum output current vs. the number of
turns in the PSI cyclotron.




5.10.9 Cryogenic Vacuum Systems
V. Baglin, CERN
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6.7.

3

Active pulse compression
I. Syratchev, CERN

Beam Deflection and Collimation with
Aligned Crystals
W. Scandale, CERN

Plasma Accelerators
C. Schroeder, C. Benedetti, E. Esarey,
LBNL

Electron plasma wave

Particle
bunch
injector

Figure 1: Schematic of a plasma accelerator consisting
of a driver (laser or particle beam), a trailing particle
(electron) bunch, and a plasma accelerating structure
(the wakefield). The two-dimensional color plot indi-
cates the electron plasma density. The red line is the
longitudinal electric field associated with the plasma
wave.

kp(z-ct)

igure 3: Laser excitation of electron density perturba-

ion n/ng in the (a) quasi-linear regime and (b) highly-
onlinear cavitated regime. Profile of the normalized
aser vector potential initially has the form a =
1o exp(—r2/r? — 22 /4L?) [propagating to the right
ind centered at k,(z — ct) = 0], with k,L = 1 and
a) ag = 1, k,rp = 5 in a matched parabolic plasma
hannel and (b) ap = 4.5, k,rp = 2\/ag ~ 4.24ina
miform plasma.




7.2.15 Beam Deflection and Collimation with
Aligned Crystals

W. Scandale, CERN




how to use this book

This is an accelerator designer’s and operator’s handbook of formulae,
tables, figures and references. It is meant to be a concise working tool.
An effort has been made to provide an index which is as complete as
possible. Each subsection (e.g. 2.3.4) is treated as a unit which is more or
less self-contained. Numbering of all figures and tables are reset at each
subsection, and references are found following each subsection.
References are not meant to be exhaustive but represent the experts’
recommendation about a reliable place to begin.

While the linear and circular accelerators for high energy physics and
synchrotron radiation applications are our primary concern, we have

tried to provide connections to other types of accelerators in the glossary
Sec. 1.6.
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Alex, Great Wall o hina, 2022

Rough beginnings

Alexander Wu Chao

Into the unknown (of Accelerator Physics)

When | started my graduate education, | single-mindedly wanted to be a theoretical physicist. | chose high energy theory
and did reasonably OK as a student. However, my advisor, Chenning Yang, had a different idea of what is the best choice
for me. He arranged for me to study under another professor, Ernest Courant, to learn accelerator physics. So | learned
accelerator physics together with high energy theory.

To my great surprise, this field of accelerator physics, which before that time | had not even heard of, | found, contains
such rich and fascinating physics, much more than | had assumed, and totally mis-fitting its name. My PhD Thesis was still
in high energy physics, but upon graduation, | needed to make a decision. Yang strongly suggested that | choose
accelerator physics, which he felt was a field bound to blossom while high energy physics was winding down. it was a
difficult decision for me. At the time, accelerator physics was not a recognized field in physics. If | entered that field at
that time, there were no professional organization, no professional journals to publish papers, no school to learn in depth,
no community prizes to get community recognition. It would be a lonely struggle along the way. Yes, there will be little
competitions, but also, there will be little recognitions. | finally decided to follow Yang's advice. | graduated and chose
accelerator physics for my career.

Yang turned out to be correct; the field blossomed over the past 5 decades. My career basically saw its growth, from an
unrecognized field to becoming a well established field. Now there are professional organizations in US, Europe, China,
Russian, Japan; there are various professional journals; there are textbooks on accelerator physics proper as well as its
sub-disciplines; there are community prizes for young people to aim for recognition; and yes, there is the Handbook.




Alexander Wu Chao — the rough beginning of the handbook

When the Handbook was first conceived, it was professor KK Phua who asked me, | recall in a party setting over some beer or wine, to contribute to
publications in the field of accelerator physics. KK was serious. | thought over it and consulted with Maury Tigner, the single best candidate
collaborator for this huge endeavor; a community Handbook. Maury immediately agreed and signed on.

At the time, the community did not even have a clear view of what constituted the field of accelerator physics and engineering. There sort of was a
vague community that was diverse, but weakly affiliated.

There was no place we could call home.

We felt a Handbook could serve as a “definition” of our field, our community home. With this, Maury and | then got started driving for this dream.
Back then the field was divided up into perhaps 200-300 sub-titles. We aimed to find one author for each sub-title, with each sub-title written by
a world's top expert (maybe with co-authors, but one author by invitation). The author was supposed to fit into 3 pages the entire accumulated
and condensed wisdom they had on their particular sub-title.

Yes, the whole-life-wisdom to be condensed on only 3 pages!

If we succeed, the handbook would be the combination of the wisdom from 200 top experts in our field, thus defining our field. We initially aimed
for 600 pages in total and had been very strict in terms of the number of pages per author. However, the first combined draft still came at 1400
pages. Much of the later period was spent negotiating/rewriting the manuscript with the authors. Also, about half of the manuscripts needed to be
reformatted into latex. Preparing for the first print of the first edition was a hard effort. Especially towards the later part, Maury and | basically
worked full time continuously for 2-3 years, 10-12 hours daily nonstop, meaning including weekends, Christmas, new year, no vacation.

Yes, it was difficult time, but we made it. At the end the first edition had 650 pages.




. *
Favourite part of Handbook m u u ry TI g n er

The Glossary.

Foray into Accelerator Physics

Half way through college i switched from naval architecture to physics.

On the first day in Electricity and Magnetism class, the prof announced that there was a part
time technician job open at the Accelerator lab and anyone who was interested should come
to his office after class... Everyone in the class went to his office! Overwhelmed, the prof said
that he would have to ask us one by one why we thought we'd be a good choice for the job.
When it came my turn | noted that: | could weld, work in a machine shop and build electronic
circuits. | got it! | liked the job and after graduating, | applied to Cornell University (where
Robert Wilson, a noted accelerator builder, was director of the high energy physics lab).

The rest is history.

Hopes and gratitude for the field

| hope that the rate of progress in accelerator development continues as it has for the last
ten years.

| have been most fortunate to have learned from friends and associates in the field including:
the other three editors of this book, the Berkely, CERN accelerator group, Cornell, DESY,
Fermilab, Princeton, SLAC.
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Did you know:

When the Betatron at Maury's
Undergraduate college got its first
beam, Maury was standing in the
beam line!




Hans Weise

Life with Accelerators

| was introduced to accelerators when my later supervisor Achim Richter advertised the advantages of
superconductivity for the future operation of the Darmstadt University superconducting recirculating
linac S-DALINAC. This happened during my first years at university, in the early 80ies. A little later, | was
allowed to join its construction and commissioning by contributing to the assembly and to solving
radiofrequency issues. Well-known colleagues and experts in the development of superconducting
accelerators like llan Ben-Zvi, Herbert Lengeler, Alan Schwettman, Todd Smith, and others supported
the fascinating work at the S-DALINAC during those years. As a PhD student | spent even more time

i with the construction and commissioning, and developed a new electron beam injector to prepare the
facility for Free-Electron Laser operation in the near infrared.

In the early 90ies, Bjoern Wiik at DESY invited the accelerator community to improve the superconducting technology further and to
develop all subsystems needed for a large high energy physics collider, the TESLA machine. | joined the team at DESY, worked for several
years with Maury Tigner, Bernard Aune, Peter Schmuser and under the supervision of Helen and Don Edwards as well as under Bjoern. A
great time! Together with Jérg Rossbach, and later Reinhard Brinkmann and others, | led many activities which culminated in the first
lasing of DESY's FLASH free-electron laser facility, and later in the construction and operation of the European XFEL. The success of this
worldwide longest superconducting linac was the reward for the journey we started as a great team of international experts and friends.

The management of the European XFEL construction came with challenges, with strong effort, and with excitement and gratification.
Such large research facilities only exist due to the team spirit of large groups of accelerator scientists, engineers, technicians, but also
plant manufacturers. Most of the recent machines were built based on in-kind contributions. Expertise from many laboratories comes
together, and finally the first beam, or first lasing; moments in my own career | will never forget! Opening the handbook, | find many co-
authors and friends, with major essential contributions to our field. The condensed knowledge of the accelerator community, published in
the Handbook, will support us during the development of future machines. Young scientists and engineers will surely benefit.




30 years of Accelerator Physics Fru n k z i m m e rm u n “

Accelerator physics is a fascinating field, allowing a very diverse set of activities, ranging from theoretical studiers, over
computer simulations and beam operation, to hardware development, for the present, next and next-next generation of

accelerators, and for numerous different applications.

One of the best lecturing professors at the University of Hamburg was Peter Schmuser, an experimental particle physicist. §
When | contacted him for a diploma thesis project, he proposed to me an accelerator physics theme related to the design
and construction of the HERA proton ring. He also introduced me to Ferdinand Willeke at DESY, a key person for the
construction, commissioning, and operation of the electron-proton collider HERA. Later, both Ferdinand and Peter became B8
supervisors for my PhD thesis. During that time, | was a member of DESY group F35H, led by Bjorn Wiik.

The HERA beam commissioning was an exciting time, with many experts from around the world visiting DESY, both for HERA

and for the new TESLA Technology Collaboration.

For quite a while | chaired an office with Don and Helen Edwards, in DESY building le. | also met Maury Tigner for the first

time at DESY then.

In 1992, after a workshop at BNL, together with a few CERN colleagues, | visited the SSC in Waxahachie, Texas. On that § -

occasion, Alex Chao gave me precious advice, which | absolutely heeded.

One year later, on the initiative of Bjorn, | joined SLAC.

Hopes for future of Accelerator Physics

| am hoping that new technologies and the ingenuity of my
colleagues will allow us to continue the remarkable accelerator
progress we have witnessed over the past century well into the
future.

To Frank, the most unexpected result during his career:

The discovery, around 1996, that the SLC spot size waist tuning
using beam-beam scans was dominated by the noise of the
measurement, and then the LHC accident in 2008.

Favorite part of Handbook:
Of course, | like the two chapters, that | have been in charge of
(laughing!) and that | am extremely familiar with.

The long tables with wake field and impedances from Bill Ng and
Karl Bane condense a large amount of useful information.

Sections on Free Electron Lasers by my former thesis advisor
Peter Schmuser and Zhirong Huang of SLAC are extremely
educating and readable.



continuity ? — will the “handbook” live forever ?

. 3.1.16 Beam Solid-Target Photon Physics
244 Beam Loading K. Ispiryan, Deceased 2016
D. Boussard, Deceased 2018

3.2.2 Impedance Calculation, Frequency
2.4.6.1 Direct space charge effects Domain

B. Zotter. Deceased 2015 R.L. Gluckstern, Deceased 2008
S.S. Kurennoy, LANL

2.6.5 Polarized Hadron Beams and Siberian
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